Détail de l'auteur
Auteur Matti Lehtomäki |
Documents disponibles écrits par cet auteur (6)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Semantic segmentation of road furniture in mobile laser scanning data / Fashuai Li in ISPRS Journal of photogrammetry and remote sensing, vol 154 (August 2019)
[article]
Titre : Semantic segmentation of road furniture in mobile laser scanning data Type de document : Article/Communication Auteurs : Fashuai Li, Auteur ; Matti Lehtomäki, Auteur ; Sander J. Oude Elberink, Auteur ; et al., Auteur Année de publication : 2019 Article en page(s) : pp 98 - 113 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] classification bayesienne
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] mobilier urbain
[Termes IGN] segmentation sémantique
[Termes IGN] semis de pointsRésumé : (Auteur) Road furniture recognition has become a prevalent issue in the past few years because of its great importance in smart cities and autonomous driving. Previous research has especially focussed on pole-like road furniture, such as traffic signs and lamp posts. Published methods have mainly classified road furniture as individual objects. However, most road furniture consists of a combination of classes, such as a traffic sign mounted on a street light pole. To tackle this problem, we propose a framework to interpret road furniture at a more detailed level. Instead of being interpreted as single objects, mobile laser scanning data of road furniture is decomposed in elements individually labelled as poles, and objects attached to them, such as, street lights, traffic signs and traffic lights. In our framework, we first detect road furniture from unorganised mobile laser scanning point clouds. Then detected road furniture is decomposed into poles and attachments (e.g. traffic signs). In the interpretation stage, we extract a set of features to classify the attachments by utilising a knowledge-driven method and four representative types of machine learning classifiers, which are random forest, support vector machine, Gaussian mixture model and naïve Bayes, to explore the optimal method. The designed features are the unary features of attachments and the spatial relations between poles and their attachments. Two experimental test sites in Enschede dataset and Saunalahti dataset were applied, and Saunalahti dataset was collected in two different epochs. In the experimental results, the random forest classifier outperforms the other methods, and the overall accuracy acquired is higher than 80% in Enschede test site and higher than 90% in both Saunalahti epochs. The designed features play an important role in the interpretation of road furniture. The results of two epochs in the same area prove the high reliability of our framework and demonstrate that our method achieves good transferability with an accuracy over 90% through employing the training data of one epoch to test the data in another epoch. Numéro de notice : A2019-266 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.06.001 Date de publication en ligne : 08/06/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.06.001 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93081
in ISPRS Journal of photogrammetry and remote sensing > vol 154 (August 2019) . - pp 98 - 113[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019081 RAB Revue Centre de documentation En réserve L003 Disponible 081-2019083 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2019082 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Is field-measured tree height as reliable as believed – A comparison study of tree height estimates from field measurement, airborne laser scanning and terrestrial laser scanning in a boreal forest / Yunsheng Wang in ISPRS Journal of photogrammetry and remote sensing, vol 147 (January 2019)
[article]
Titre : Is field-measured tree height as reliable as believed – A comparison study of tree height estimates from field measurement, airborne laser scanning and terrestrial laser scanning in a boreal forest Type de document : Article/Communication Auteurs : Yunsheng Wang, Auteur ; Matti Lehtomäki, Auteur ; Xinlian Liang, Auteur ; Jiri Pyorala, Auteur ; et al., Auteur Année de publication : 2019 Article en page(s) : pp 132 - 145 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] Betula pendula
[Termes IGN] betula pubescens
[Termes IGN] diamètre à hauteur de poitrine
[Termes IGN] données de terrain
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] Finlande
[Termes IGN] forêt boréale
[Termes IGN] hauteur à la base du houppier
[Termes IGN] hauteur des arbres
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] modèle numérique de terrain
[Termes IGN] Picea abies
[Termes IGN] Pinus sylvestris
[Termes IGN] semis de points
[Termes IGN] télémétrie laser aéroporté
[Termes IGN] télémétrie laser terrestreRésumé : (auteur) Quantitative comparisons of tree height observations from different sources are scarce due to the difficulties in effective sampling. In this study, the reliability and robustness of tree height observations obtained via a conventional field inventory, airborne laser scanning (ALS) and terrestrial laser scanning (TLS) were investigated. A carefully designed non-destructive experiment was conducted that included 1174 individual trees in 18 sample plots (32 m × 32 m) in a Scandinavian boreal forest. The point density of the ALS data was approximately 450 points/m2. The TLS data were acquired with multi-scans from the center and the four quadrant directions of the sample plots. Both the ALS and TLS data represented the cutting edge point cloud products. Tree heights were manually measured from the ALS and TLS point clouds with the aid of existing tree maps. Therefore, the evaluation results revealed the capacities of the applied laser scanning (LS) data while excluding the influence of data processing approach such as the individual tree detection. The reliability and robustness of different tree height sources were evaluated through a cross-comparison of the ALS-, TLS-, and field- based tree heights. Compared to ALS and TLS, field measurements were more sensitive to stand complexity, crown classes, and species. Overall, field measurements tend to overestimate height of tall trees, especially tall trees in codominant crown class. In dense stands, high uncertainties also exist in the field measured heights for small trees in intermediate and suppressed crown class. The ALS-based tree height estimates were robust across all stand conditions. The taller the tree, the more reliable was the ALS-based tree height. The highest uncertainty in ALS-based tree heights came from trees in intermediate crown class, due to the difficulty of identifying treetops. When using TLS, reliable tree heights can be expected for trees lower than 15–20 m in height, depending on the complexity of forest stands. The advantage of LS systems was the robustness of the geometric accuracy of the data. The greatest challenges of the LS techniques in measuring individual tree heights lie in the occlusion effects, which lead to omissions of trees in intermediate and suppressed crown classes in ALS data and incomplete crowns of tall trees in TLS data. Numéro de notice : A2019-036 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2018.11.008 Date de publication en ligne : 22/11/2018 En ligne : https://doi.org/10.1016/j.isprsjprs.2018.11.008 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91973
in ISPRS Journal of photogrammetry and remote sensing > vol 147 (January 2019) . - pp 132 - 145[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019011 RAB Revue Centre de documentation En réserve L003 Disponible 081-2019013 DEP-EXM Revue LASTIG Dépôt en unité Exclu du prêt 081-2019012 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt International benchmarking of terrestrial laser scanning approaches for forest inventories / Xinlian Liang in ISPRS Journal of photogrammetry and remote sensing, vol 144 (October 2018)
[article]
Titre : International benchmarking of terrestrial laser scanning approaches for forest inventories Type de document : Article/Communication Auteurs : Xinlian Liang, Auteur ; Juha Hyyppä, Auteur ; Harri Kaartinen, Auteur ; Matti Lehtomäki, Auteur ; Jiri Pyorala, Auteur ; Norbert Pfeifer, Auteur ; Markus Holopainen, Auteur ; Gabor Brolly, Auteur ; Francesco Pirotti, Auteur ; Jan Hackenberg , Auteur Année de publication : 2018 Projets : DIABOLO / Packalen, Tuula Article en page(s) : pp 137 - 179 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] algorithmique
[Termes IGN] benchmark spatial
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] état de l'art
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] lasergrammétrie
[Termes IGN] semis de points
[Vedettes matières IGN] Inventaire forestierRésumé : (Auteur) The last two decades have witnessed increasing awareness of the potential of terrestrial laser scanning (TLS) in forest applications in both public and commercial sectors, along with tremendous research efforts and progress. It is time to inspect the achievements of and the remaining barriers to TLS-based forest investigations, so further research and application are clearly orientated in operational uses of TLS. In such context, the international TLS benchmarking project was launched in 2014 by the European Spatial Data Research Organization and coordinated by the Finnish Geospatial Research Institute. The main objectives of this benchmarking study are to evaluate the potential of applying TLS in characterizing forests, to clarify the strengths and the weaknesses of TLS as a measure of forest digitization, and to reveal the capability of recent algorithms for tree-attribute extraction. The project is designed to benchmark the TLS algorithms by processing identical TLS datasets for a standardized set of forest attribute criteria and by evaluating the results through a common procedure respecting reliable references. Benchmarking results reflect large variances in estimating accuracies, which were unveiled through the 18 compared algorithms and through the evaluation framework, i.e., forest complexity categories, TLS data acquisition approaches, tree attributes and evaluation procedures. The evaluation framework includes three new criteria proposed in this benchmarking and the algorithm performances are investigated through combining two or more criteria (e.g., the accuracy of the individual tree attributes are inspected in conjunction with plot-level completeness) in order to reveal algorithms’ overall performance. The results also reveal some best available forest attribute estimates at this time, which clarify the status quo of TLS-based forest investigations. Some results are well expected, while some are new, e.g., the variances of estimating accuracies between single-/multi-scan, the principle of the algorithm designs and the possibility of a computer outperforming human operation. With single-scan data, i.e., one hemispherical scan per plot, most of the recent algorithms are capable of achieving stem detection with approximately 75% completeness and 90% correctness in the easy forest stands (easy plots: 600 stems/ha, 20 cm mean DBH). The detection rate decreases when the stem density increases and the average DBH decreases, i.e., 60% completeness with 90% correctness (medium plots: 1000 stem/ha, 15 cm mean DBH) and 30% completeness with 90% correctness (difficult plots: 2000 stems/ha, 10 cm mean DBH). The application of the multi-scan approach, i.e., five scans per plot at the center and four quadrant angles, is more effective in complex stands, increasing the completeness to approximately 90% for medium plots and to approximately 70% for difficult plots, with almost 100% correctness. The results of this benchmarking also show that the TLS-based approaches can provide the estimates of the DBH and the stem curve at a 1–2 cm accuracy that are close to what is required in practical applications, e.g., national forest inventories (NFIs). In terms of algorithm development, a high level of automation is a commonly shared standard, but a bottleneck occurs at stem detection and tree height estimation, especially in multilayer and dense forest stands. The greatest challenge is that even with the multi-scan approach, it is still hard to completely and accurately record stems of all trees in a plot due to the occlusion effects of the trees and bushes in forests. Future development must address the redundant yet incomplete point clouds of forest sample plots and recognize trees more accurately and efficiently. It is worth noting that TLS currently provides the best quality terrestrial point clouds in comparison with all other technologies, meaning that all the benchmarks labeled in this paper can also serve as a reference for other terrestrial point clouds sources. Numéro de notice : A2018-400 Affiliation des auteurs : LIF+Ext (2012-2019) Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2018.06.021 Date de publication en ligne : 24/07/2018 En ligne : https://doi.org/10.1016/j.isprsjprs.2018.06.021 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=90829
in ISPRS Journal of photogrammetry and remote sensing > vol 144 (October 2018) . - pp 137 - 179[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2018101 RAB Revue Centre de documentation En réserve L003 Disponible 081-2018103 DEP-EXM Revue LASTIG Dépôt en unité Exclu du prêt 081-2018102 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt In-situ measurements from mobile platforms: An emerging approach to address the old challenges associated with forest inventories / Xinlian Liang in ISPRS Journal of photogrammetry and remote sensing, vol 143 (September 2018)
[article]
Titre : In-situ measurements from mobile platforms: An emerging approach to address the old challenges associated with forest inventories Type de document : Article/Communication Auteurs : Xinlian Liang, Auteur ; Antero Kukko, Auteur ; Juha Hyyppä, Auteur ; Matti Lehtomäki, Auteur ; Jiri Pyorala, Auteur ; et al., Auteur Année de publication : 2018 Article en page(s) : pp 97 - 107 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] estimation de précision
[Termes IGN] exhaustivité des données
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] lasergrammétrie
[Termes IGN] lidar mobile
[Termes IGN] semis de points
[Vedettes matières IGN] Inventaire forestierRésumé : (Auteur) Accurate assessments of forest resources rely on ground truth data that are collected via in-situ measurements, which are fundamental for all other statistical- and/or remote-sensing-based deductions on quantified forest attributes. The major bottleneck of the current in-situ observation system is that the data collection is time consuming, and, thus, limited in extent, which potentially biases any further inferences made. Consequently, conventional field-data-collection approaches can hardly keep pace with the coverage, scale and frequency required for contemporary and future forest inventories. In-situ measurements from mobile platforms seem to be a promising technique to solve this problem and are estimated at least 10 times faster than static techniques (e.g., terrestrial laser scanning, TLS) at the plot level. However, the mobile platforms are still at the very early stages of development, and it is unclear which three-dimensional (3D) forest measurements the mobile systems can provide and at what accuracy. This study presents a quantitative evaluation of the performance of mobile platforms in a variety of forest conditions and through a comparison with state-of-the-art static in-situ observations. Two mobile platforms were used to collect field data, where the same laser-scanning system was both mounted on top of a vehicle and wore by an operator. The static in-situ observation from TLS is used as a baseline for the evaluation. All point clouds involved were processed through the same processing chain and compared to conventional manual measurement. The evaluation results indicate that the mobile platforms can assess homogeneous forests as well as static observations, but they cannot yet assess heterogeneous forest as required by practical applications. The major challenge is twofold: mobile-data coverage and accuracy. Future research should focus on the robust registration techniques between strips, especially in complex forest conditions, since errors of data registration results in significant impacts on tree attributes estimation accuracy. In cases that the spatial inconstancy cannot be eliminated, attributes estimation in single strips, i.e., the multi-single-scan approach, is an alternative. Meanwhile, operator training deserves attention since the data quality from mobile platforms is partly determined by the operators’ selection of trajectory in the field. Numéro de notice : A2018-357 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2018.04.019 Date de publication en ligne : 18/06/2018 En ligne : https://doi.org/10.1016/j.isprsjprs.2018.04.019 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=90591
in ISPRS Journal of photogrammetry and remote sensing > vol 143 (September 2018) . - pp 97 - 107[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2018091 RAB Livre Centre de documentation En réserve L003 Disponible 081-2018093 DEP-EXM Livre LASTIG Dépôt en unité Exclu du prêt 081-2018092 DEP-EAF Livre Nancy Dépôt en unité Exclu du prêt Object classification and recognition from mobile laser scanning point clouds in a road environment / Matti Lehtomäki in IEEE Transactions on geoscience and remote sensing, vol 54 n° 2 (February 2016)
[article]
Titre : Object classification and recognition from mobile laser scanning point clouds in a road environment Type de document : Article/Communication Auteurs : Matti Lehtomäki, Auteur ; Anttoni Jaakkola, Auteur ; Juha Hyyppä, Auteur ; et al., Auteur Année de publication : 2016 Article en page(s) : pp 1226 - 1239 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] apprentissage automatique
[Termes IGN] classification automatique
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] histogramme
[Termes IGN] reconnaissance d'objets
[Termes IGN] réseau routier
[Termes IGN] segmentation
[Termes IGN] semis de points
[Termes IGN] télémétrie laser mobile
[Termes IGN] télémétrie laser terrestreRésumé : (Auteur) Automatic methods are needed to efficiently process the large point clouds collected using a mobile laser scanning (MLS) system for surveying applications. Machine-learning-based object recognition from MLS point clouds in a road and street environment was studied in order to create maps from the road environment infrastructure. The developed automatic processing workflow included the following phases: the removal of the ground and buildings, segmentation, segment classification, and object location estimation. Several novel geometry-based features, which were previously applied in autonomous driving and general point cloud processing, were applied for the segment classification of MLS point clouds. The features were divided into three sets, i.e., local descriptor histograms (LDHs), spin images, and general shape and point distribution features, respectively. These were used in the classification of the following roadside objects: trees, lamp posts, traffic signs, cars, pedestrians, and hoardings. The accuracy of the object recognition workflow was evaluated using a data set that contained more than 400 objects. LDHs and spin images were applied for the first time for machine-learning-based object classification in MLS point clouds in the surveying applications of the road and street environment. The use of these features improved the classification accuracy by 9.6% (resulting in 87.9% accuracy) compared with the accuracy obtained using 17 general shape and point distribution features that represent the current state of the art in the field of MLS; therefore, significant improvement in the classification accuracy was achieved. Connected component segmentation and ground extraction were the cause of most of the errors and should be thus improved in the future. Numéro de notice : A2016-120 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2015.2476502 En ligne : https://doi.org/10.1109/TGRS.2015.2476502 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=80000
in IEEE Transactions on geoscience and remote sensing > vol 54 n° 2 (February 2016) . - pp 1226 - 1239[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-2016021 SL Revue Centre de documentation Revues en salle Disponible EuroSDR project Commission 2, Mobile mapping - road environment mapping using mobile laser scanning / Harri Kaartinen (2013)Permalink