Détail de l'auteur
Auteur Qingshan Liu |
Documents disponibles écrits par cet auteur (3)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Learning multiscale deep features for high-resolution satellite image scene classification / Qingshan Liu in IEEE Transactions on geoscience and remote sensing, vol 56 n° 1 (January 2018)
[article]
Titre : Learning multiscale deep features for high-resolution satellite image scene classification Type de document : Article/Communication Auteurs : Qingshan Liu, Auteur ; Renlong Hang, Auteur ; Huihui Song, Auteur ; Zhi Li, Auteur Année de publication : 2018 Article en page(s) : pp 117 - 126 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] apprentissage profond
[Termes IGN] classification
[Termes IGN] image satellite
[Termes IGN] méthode fondée sur le noyau
[Termes IGN] réseau neuronal convolutifRésumé : (Auteur) In this paper, we propose a multiscale deep feature learning method for high-resolution satellite image scene classification. Specifically, we first warp the original satellite image into multiple different scales. The images in each scale are employed to train a deep convolutional neural network (DCNN). However, simultaneously training multiple DCNNs is time-consuming. To address this issue, we explore DCNN with spatial pyramid pooling (SPP-net). Since different SPP-nets have the same number of parameters, which share the identical initial values, and only fine-tuning the parameters in fully connected layers ensures the effectiveness of each network, thereby greatly accelerating the training process. Then, the multiscale satellite images are fed into their corresponding SPP-nets, respectively, to extract multiscale deep features. Finally, a multiple kernel learning method is developed to automatically learn the optimal combination of such features. Experiments on two difficult data sets show that the proposed method achieves favorable performance compared with other state-of-the-art methods. Numéro de notice : A2018-185 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2017.2743243 Date de publication en ligne : 13/09/2017 En ligne : https://doi.org/10.1109/TGRS.2017.2743243 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89842
in IEEE Transactions on geoscience and remote sensing > vol 56 n° 1 (January 2018) . - pp 117 - 126[article]Matrix-based discriminant subspace ensemble for hyperspectral image spatial–spectral feature fusion / Renlong Hang in IEEE Transactions on geoscience and remote sensing, vol 54 n° 2 (February 2016)
[article]
Titre : Matrix-based discriminant subspace ensemble for hyperspectral image spatial–spectral feature fusion Type de document : Article/Communication Auteurs : Renlong Hang, Auteur ; Qingshan Liu, Auteur ; Huihui Song, Auteur ; Yubao Sun, Auteur Année de publication : 2016 Article en page(s) : pp 783 - 794 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse discriminante
[Termes IGN] classification multibande
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] fusion de données
[Termes IGN] image hyperspectrale
[Termes IGN] matriceRésumé : (Auteur) Spatial-spectral feature fusion is well acknowledged as an effective method for hyperspectral (HS) image classification. Many previous studies have been devoted to this subject. However, these methods often regard the spatial-spectral high-dimensional data as 1-D vector and then extract informative features for classification. In this paper, we propose a new HS image classification method. Specifically, matrix-based spatial-spectral feature representation is designed for each pixel to capture the local spatial contextual and the spectral information of all the bands, which can well preserve the spatial-spectral correlation. Then, matrix-based discriminant analysis is adopted to learn the discriminative feature subspace for classification. To further improve the performance of discriminative subspace, a random sampling technique is used to produce a subspace ensemble for final HS image classification. Experiments are conducted on three HS remote sensing data sets acquired by different sensors, and experimental results demonstrate the efficiency of the proposed method. Numéro de notice : A2016-116 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2015.2465899 En ligne : http://dx.doi.org/10.1109/TGRS.2015.2465899 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=79996
in IEEE Transactions on geoscience and remote sensing > vol 54 n° 2 (February 2016) . - pp 783 - 794[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-2016021 SL Revue Centre de documentation Revues en salle Disponible Improving the spatial resolution of landsat TM/ETM+ through fusion with SPOT5 images via learning-based super-resolution / Huihui Song in IEEE Transactions on geoscience and remote sensing, vol 53 n° 3 (March 2015)
[article]
Titre : Improving the spatial resolution of landsat TM/ETM+ through fusion with SPOT5 images via learning-based super-resolution Type de document : Article/Communication Auteurs : Huihui Song, Auteur ; Bo Huang, Auteur ; Qingshan Liu, Auteur ; et al., Auteur Année de publication : 2015 Article en page(s) : pp 1195 - 1204 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] couple stéréoscopique
[Termes IGN] dégradation d'image
[Termes IGN] fauchée
[Termes IGN] fusion d'images
[Termes IGN] image Landsat-ETM+
[Termes IGN] image Landsat-TM
[Termes IGN] image SPOT 5
[Termes IGN] pouvoir de résolution géométrique
[Termes IGN] résolution multipleRésumé : (Auteur) To take advantage of the wide swath width of Landsat Thematic Mapper (TM)/Enhanced Thematic Mapper Plus (ETM+) images and the high spatial resolution of Système Pour l'Observation de la Terre 5 (SPOT5) images, we present a learning-based super-resolution method to fuse these two data types. The fused images are expected to be characterized by the swath width of TM/ETM+ images and the spatial resolution of SPOT5 images. To this end, we first model the imaging process from a SPOT image to a TM/ETM+ image at their corresponding bands, by building an image degradation model via blurring and downsampling operations. With this degradation model, we can generate a simulated Landsat image from each SPOT5 image, thereby avoiding the requirement for geometric coregistration for the two input images. Then, band by band, image fusion can be implemented in two stages: 1) learning a dictionary pair representing the high- and low-resolution details from the given SPOT5 and the simulated TM/ETM+ images; 2) super-resolving the input Landsat images based on the dictionary pair and a sparse coding algorithm. It is noteworthy that the proposed method can also deal with the conventional spatial and spectral fusion of TM/ETM+ and SPOT5 images by using the learned dictionary pairs. To examine the performance of the proposed method of fusing the swath width of TM/ETM+ and the spatial resolution of SPOT5, we illustrate the fusion results on the actual TM images and compare with several classic pansharpening methods by assuming that the corresponding SPOT5 panchromatic image exists. Furthermore, we implement the classification experiments on both actual images and fusion results to demonstrate the benefits of the proposed method for further classification applications. Numéro de notice : A2015-130 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2014.2335818 Date de publication en ligne : 25/07/2014 En ligne : https://doi.org/10.1109/TGRS.2014.2335818 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=75793
in IEEE Transactions on geoscience and remote sensing > vol 53 n° 3 (March 2015) . - pp 1195 - 1204[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-2015031 RAB Revue Centre de documentation En réserve L003 Disponible