Détail de l'auteur
Auteur Le Sun |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Supervised spectral–spatial hyperspectral image classification with weighted markov random fields / Le Sun in IEEE Transactions on geoscience and remote sensing, vol 53 n° 3 (March 2015)
[article]
Titre : Supervised spectral–spatial hyperspectral image classification with weighted markov random fields Type de document : Article/Communication Auteurs : Le Sun, Auteur ; Zebin Wu, Auteur ; Jianjun Liu, Auteur ; et al., Auteur Année de publication : 2015 Article en page(s) : pp 1490 - 1503 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] champ aléatoire de Markov
[Termes IGN] classification dirigée
[Termes IGN] classification spectrale
[Termes IGN] image hyperspectrale
[Termes IGN] pondération
[Termes IGN] régression logistiqueRésumé : (Auteur) This paper presents a new approach for hyperspectral image classification exploiting spectral-spatial information. Under the maximum a posteriori framework, we propose a supervised classification model which includes a spectral data fidelity term and a spatially adaptive Markov random field (MRF) prior in the hidden field. The data fidelity term adopted in this paper is learned from the sparse multinomial logistic regression (SMLR) classifier, while the spatially adaptive MRF prior is modeled by a spatially adaptive total variation (SpATV) regularization to enforce a spatially smooth classifier. To further improve the classification accuracy, the true labels of training samples are fixed as an additional constraint in the proposed model. Thus, our model takes full advantage of exploiting the spatial and contextual information present in the hyperspectral image. An efficient hyperspectral image classification algorithm, named SMLR-SpATV, is then developed to solve the final proposed model using the alternating direction method of multipliers. Experimental results on real hyperspectral data sets demonstrate that the proposed approach outperforms many state-of-the-art methods in terms of the overall accuracy, average accuracy, and kappa (k) statistic. Numéro de notice : A2015-134 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2014.2344442 Date de publication en ligne : 18/08/2014 En ligne : https://doi.org/10.1109/TGRS.2014.2344442 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=75800
in IEEE Transactions on geoscience and remote sensing > vol 53 n° 3 (March 2015) . - pp 1490 - 1503[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-2015031 RAB Revue Centre de documentation En réserve L003 Disponible