Détail de l'auteur
Auteur Guangxing Wang |
Documents disponibles écrits par cet auteur (4)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
The impact of second-order ionospheric delays on the ZWD estimation with GPS and BDS measurements / Shaocheng Zhang in GPS solutions, vol 24 n° 2 (April 2020)
[article]
Titre : The impact of second-order ionospheric delays on the ZWD estimation with GPS and BDS measurements Type de document : Article/Communication Auteurs : Shaocheng Zhang, Auteur ; Lei Fang, Auteur ; Guangxing Wang, Auteur ; Wei Li, Auteur Année de publication : 2020 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes IGN] champ géomagnétique
[Termes IGN] décalage d'horloge
[Termes IGN] données BeiDou
[Termes IGN] données GPS
[Termes IGN] gradient ionosphèrique
[Termes IGN] méthode des moindres carrés
[Termes IGN] positionnement ponctuel précis
[Termes IGN] retard ionosphèrique
[Termes IGN] retard troposphérique zénithal
[Termes IGN] teneur verticale totale en électronsRésumé : (auteur) Since millimeter accuracy is required in many GNSS applications such as real-time zenith wet delay (ZWD) estimation, the higher-order ionospheric delays on GNSS signals are no longer negligible. We calculated the second-order ionospheric delays (I2) and analyzed the impact on the ZWD estimation with GPS-only and combined GPS/BDS observations. The undifferenced PPP model with fixed coordinates was used to estimate the ZWD and horizontal gradients. The method of blockwise sequential least squares was utilized to eliminate the receiver clock biases and compute the I2 impact on the ZWDs. The I2 delays on each GNSS satellite observations were calculated with the CODE final TEC map and the 12th generation of the international geomagnetic reference field (IGRF-12) model. The statistical results with the actual observation geometry show that the I2 delays can reach over 10 mm during the daytime, and the corresponding impact on the estimated ZWD can reach up to several millimeters. At station HKWS, the maximum I2 impact with GPS only reaches up to 3.1 mm and is still 2.4 mm when both GPS and BDS observations are used. The simulated I2 impact on the ZWD could reach several millimeters, even though the TEC and geomagnetic values were calculated from relatively moderate background models. Compared with the 5–10 mm precision of real-time ZWD estimation, the I2 delays must not be ignored, especially during high VTEC periods. Numéro de notice : A2020-082 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s10291-020-0954-8 Date de publication en ligne : 04/02/2020 En ligne : https://doi.org/10.1007/s10291-020-0954-8 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94651
in GPS solutions > vol 24 n° 2 (April 2020)[article]A new stochastic simulation algorithm for image-based classification : Feature-space indicator simulation / Qing Wang in ISPRS Journal of photogrammetry and remote sensing, vol 152 (June 2019)
[article]
Titre : A new stochastic simulation algorithm for image-based classification : Feature-space indicator simulation Type de document : Article/Communication Auteurs : Qing Wang, Auteur ; Hua Sun, Auteur ; Ruopu Li, Auteur ; Guangxing Wang, Auteur Année de publication : 2019 Article en page(s) : pp 145 - 165 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] forêt
[Termes IGN] géostatistique
[Termes IGN] image Landsat-OLI
[Termes IGN] image SPOT 5
[Termes IGN] Mongolie intérieure (Chine)
[Termes IGN] occupation du sol
[Termes IGN] précision de la classification
[Termes IGN] utilisation du sol
[Termes IGN] variogrammeRésumé : (Auteur) Traditional parametric methods for classification of land use and land cover (LULC) types using remote sensing imagery assume a global distribution model and fail to consider local variation of categorical variables. Differently, non-parametric methods do not make any statistical assumptions but are typically sensitive to the sample sizes of training sample data that usually require a high cost to collect in the field. Geostatistical classifiers, such as indicator kriging and simulation, are local variability-based methods that exhibit great potential for image-based classification of LULC types. However, variogram models required are highly sensitive to the spatial configuration of training samples as well as sample size given a study area. Moreover, when a large number of spectral variables are considered into kriging systems, modeling the variograms and cross-variograms would be problematic. To circumvent these issues, this study extended the geostatistical methods from a 2-dimensional geographic space to a m-dimensional image feature space to derive feature-space indicator variograms (FSIVs). Moreover, a novel stochastic simulation classification algorithm, Feature-Space Indicator Simulation (FSIS), was proposed and examined for classification of LULC types in Duolun County located in Inner Mongolia and in Huang-Feng-Qiao (HFQ) forest farm, Hunan of China. In Duolun, six LULC types were involved and in HFQ a complicated forest landscape consisting of nine forest types plus water, built-up area, and agricultural/bare soil, was classified. The classification results of FSIS were compared with another feature-space geostatistical classifier – feature-space indicator kriging (FSIK), a traditional parametric method – maximum likelihood (ML), a widely used nonparametric method – support vector machine (SVM), and a recently popular method – random forest (RF). The results showed that compared with ML, SVM and RF, in both study areas FSIS statistically significantly increased the accuracy of the classifications by 10.0–29.9% for percentage correct and 19.0–47.6% for Kappa statistic. Compared with FSIK, FSIS also improved the classification accuracy but the accuracy increases were relatively smaller with the percentages correct of 3.5% and 7.6% and the Kappa values of 4.6% and 8.6% for Duolun and HFQ, respectively. Moreover, FSIS led to the spatial uncertainties of the classification estimates as the quality measure of the estimates. In addition, the results also demonstrated that FSIVs were sensitive to the within-class heterogeneity but not very much to the size of training samples. Overall, FSIS exhibited the greater potential to improve the classification accuracy of LULC and forest types using remote sensing image. Numéro de notice : A2019-457 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.04.011 Date de publication en ligne : 25/04/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.04.011 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92871
in ISPRS Journal of photogrammetry and remote sensing > vol 152 (June 2019) . - pp 145 - 165[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019061 RAB Revue Centre de documentation En réserve L003 Disponible 081-2019063 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2019062 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Calibration errors in determining slant Total Electron Content (TEC) from multi-GNSS data / Wei Li in Advances in space research, vol 63 n° 5 (1 March 2019)
[article]
Titre : Calibration errors in determining slant Total Electron Content (TEC) from multi-GNSS data Type de document : Article/Communication Auteurs : Wei Li, Auteur ; Guangxing Wang, Auteur ; Jinzhong Mi, Auteur ; Shaocheng Zhang, Auteur Année de publication : 2019 Article en page(s) : pp 1670 - 1680 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de géodésie spatiale
[Termes IGN] données BeiDou
[Termes IGN] données Galileo
[Termes IGN] données GNSS
[Termes IGN] données GPS
[Termes IGN] étalonnage des données
[Termes IGN] ligne de base
[Termes IGN] propagation ionosphérique
[Termes IGN] simple différence
[Termes IGN] teneur totale en électrons
[Termes IGN] trajet multipleRésumé : (Auteur) The global navigation satellite system (GNSS) is presently a powerful tool for sensing the Earth's ionosphere. For this purpose, the ionospheric measurements (IMs), which are by definition slant total electron content biased by satellite and receiver differential code biases (DCBs), need to be first extracted from GNSS data and then used as inputs for further ionospheric representations such as tomography. By using the customary phase-to-code leveling procedure, this research comparatively evaluates the calibration errors on experimental IMs obtained from three GNSS, namely the US Global Positioning System (GPS), the Chinese BeiDou Navigation Satellite System (BDS), and the European Galileo. On the basis of ten days of dual-frequency, triple-GNSS observations collected from eight co-located ground receivers that independently form short-baselines and zero-baselines, the IMs are determined for each receiver for all tracked satellites and then for each satellite differenced for each baseline to evaluate their calibration errors. As first derived from the short-baseline analysis, the effects of calibration errors on IMs range, in total electron content units, from 1.58 to 2.16, 0.70 to 1.87, and 1.13 to 1.56 for GPS, Galileo, and BDS, respectively. Additionally, for short-baseline experiment, it is shown that the code multipath effect accounts for their main budget. Sidereal periodicity is found in single-differenced (SD) IMs for GPS and BDS geostationary satellites, and the correlation of SD IMs over two consecutive days achieves the maximum value when the time tag is around 4 min. Moreover, as byproducts of zero-baseline analysis, daily between-receiver DCBs for GPS are subject to more significant intra-day variations than those for BDS and Galileo. Numéro de notice : A2019-172 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.asr.2018.11.020 Date de publication en ligne : 05/12/2018 En ligne : https://doi.org/10.1016/j.asr.2018.11.020 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92624
in Advances in space research > vol 63 n° 5 (1 March 2019) . - pp 1670 - 1680[article]Comparison of methods toward multi-scale forest carbon mapping and spatial uncertainty analysis: combining national forest inventory plot data and landsat TM images / Andrew L. Fleming in European Journal of Forest Research, vol 134 n° 1 (January 2015)
[article]
Titre : Comparison of methods toward multi-scale forest carbon mapping and spatial uncertainty analysis: combining national forest inventory plot data and landsat TM images Type de document : Article/Communication Auteurs : Andrew L. Fleming, Auteur ; Guangxing Wang, Auteur ; Ronald E. McRoberts, Auteur Année de publication : 2015 Article en page(s) : pp 125 - 137 Langues : Anglais (eng) Descripteur : [Termes IGN] carte thématique
[Termes IGN] Etats-Unis
[Termes IGN] Illinois (Etats-Unis)
[Termes IGN] image Landsat-TM
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] prédiction
[Termes IGN] puits de carbone
[Termes IGN] régression linéaire
[Vedettes matières IGN] Végétation et changement climatiqueRésumé : (auteur) Accurate spatial estimation of forest carbon stocks and their spatial uncertainties at local, regional, national, and global scales is a critical step in global carbon cycle modeling and management. This study aimed at enhancing the methods that are currently used in this area by combining plot data from the forest inventory and analysis program of the U.S. Forest Service and free landsat thematic mapper image data. Three mapping methods including linear regression, sequential Gaussian co-simulation, and block co-simulation algorithm were compared with respect to the accuracy of forest carbon stock estimates obtained for a study area in Southern Illinois, USA. The results indicated that although the linear regression resulted in smaller prediction errors than the sequential Gaussian co-simulation and the block co-simulation approaches, it also produced both negative and unreasonably large estimates, which is a serious drawback. Moreover, the sequential Gaussian co-simulation and the block co-simulation produced not only accurate carbon predictions, but also uncertainties for the local estimates. In addition, the block co-simulation approach scaled up both forest carbon stocks and the input uncertainties from finer to coarser spatial resolutions as is required for mapping forest carbon at national and global scales. Thus, the co-simulation and block co-simulation algorithms resolved an important current methodological challenge. Numéro de notice : A2015-190 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article DOI : 10.1007/s10342-014-0838-y Date de publication en ligne : 05/08/2014 En ligne : https://doi.org/10.1007/s10342-014-0838-y Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=75966
in European Journal of Forest Research > vol 134 n° 1 (January 2015) . - pp 125 - 137[article]