Détail de l'auteur
Auteur Yongxue Liu |
Documents disponibles écrits par cet auteur (3)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Detecting high-temperature anomalies from Sentinel-2 MSI images / Yongxue Liu in ISPRS Journal of photogrammetry and remote sensing, vol 177 (July 2021)
[article]
Titre : Detecting high-temperature anomalies from Sentinel-2 MSI images Type de document : Article/Communication Auteurs : Yongxue Liu, Auteur ; Zhi Weifeng, Auteur ; Bihua Xu, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 174 - 193 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse comparative
[Termes IGN] anomalie thermique
[Termes IGN] éruption volcanique
[Termes IGN] image aérienne
[Termes IGN] image Landsat-OLI
[Termes IGN] image proche infrarouge
[Termes IGN] image Sentinel-MSI
[Termes IGN] image thermique
[Termes IGN] incendie
[Termes IGN] réflectance spectrale
[Termes IGN] risque technologique
[Termes IGN] série temporelle
[Termes IGN] température au solRésumé : (Auteur) High-temperature anomalies (HTAs) of the earth's surface, such as fires, volcanic activities, and industrial heat sources, have a profound impact on Earth's system. Sentinel-2 Multispectral Instrument (MSI) provides spatially-specific information for precisely measuring the location and extent of HTAs at a fine scale. However, detecting HTAs from MSI images remains challenging because the emitted radiance of an HTA in the short-wave infrared (SWIR) bands can be easily mixed with the reflected solar radiance background in the daytime; and an increasing number of atypical cases in MSI images need to be treated with the enhanced spatial resolution. A generic HTA detection approach that handles both anthropogenic and natural HTAs will broaden the scope of MSI applications. In this study, (i) we highlight two spectral characteristics of HTAs in the far-SWIR, near-SWIR, and NIR bands (i.e., (ρfar-SWIR - ρnear-SWIR)/ρNIR ≥ 0.45 and (ρfar-SWIR -ρnear-SWIR) ≥ ρnear-SWIR - ρNIR) that can effectively enhance HTAs from background geo-features, based on the reflectance spectra in airborne imaging spectrometer data. (ii) We propose a tri-spectral thermal anomaly index (TAI) that jointly uses the two high-temperature-sensitive SWIR bands and the high-temperature-insensitive NIR band to enhance HTAs, based on the above characteristics and a comprehensive sampling of different types of HTAs from 1,974 MSI images. (iii) We develop a TAI-based approach for MSI images to detect HTAs in general. The proposed approach was applied to detect different types of HTAs, including different biomass burnings, active volcanoes, and industrial HTAs, over a wide range of land-cover scenarios. Validations and comparisons demonstrate the proposed approach is reliable and performs better than the existing state-of-the-art HTA detection approaches. Evaluations on two types of small industrial HTAs, including operating kilns and enclosed landfill gas flares, show that the HTA detection probability of the TAI-based approach from time-series MSI images is ~ 84.91% and 88.23%, respectively. Further investigations show that the TAI-based approach also has good transferability in detecting HTAs from multispectral images acquired by Landsat-family satellites. Numéro de notice : A2021-372 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.05.008 Date de publication en ligne : 23/05/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.05.008 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97808
in ISPRS Journal of photogrammetry and remote sensing > vol 177 (July 2021) . - pp 174 - 193[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2021071 SL Revue Centre de documentation Revues en salle Disponible 081-2021073 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2021072 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Training set size, scale, and features in Geographic Object-Based Image Analysis of very high resolution unmanned aerial vehicle imagery / Lei Ma in ISPRS Journal of photogrammetry and remote sensing, vol 102 (April 2015)
[article]
Titre : Training set size, scale, and features in Geographic Object-Based Image Analysis of very high resolution unmanned aerial vehicle imagery Type de document : Article/Communication Auteurs : Lei Ma, Auteur ; Liang Cheng, Auteur ; Manchung Li, Auteur ; Yongxue Liu, Auteur ; Xiaoxue Ma, Auteur Année de publication : 2015 Article en page(s) : pp 14 - 27 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse d'image orientée objet
[Termes IGN] classification orientée objet
[Termes IGN] drone
[Termes IGN] échelle de prise de vue
[Termes IGN] image à ultra haute résolution
[Termes IGN] image aérienne
[Termes IGN] image optique
[Termes IGN] taille du jeu de donnéesRésumé : (auteur) Unmanned Aerial Vehicle (UAV) has been used increasingly for natural resource applications in recent years due to their greater availability and the miniaturization of sensors. In addition, Geographic Object-Based Image Analysis (GEOBIA) has received more attention as a novel paradigm for remote sensing earth observation data. However, GEOBIA generates some new problems compared with pixel-based methods. In this study, we developed a strategy for the semi-automatic optimization of object-based classification, which involves an area-based accuracy assessment that analyzes the relationship between scale and the training set size. We found that the Overall Accuracy (OA) increased as the training set ratio (proportion of the segmented objects used for training) increased when the Segmentation Scale Parameter (SSP) was fixed. The OA increased more slowly as the training set ratio became larger and a similar rule was obtained according to the pixel-based image analysis. The OA decreased as the SSP increased when the training set ratio was fixed. Consequently, the SSP should not be too large during classification using a small training set ratio. By contrast, a large training set ratio is required if classification is performed using a high SSP. In addition, we suggest that the optimal SSP for each class has a high positive correlation with the mean area obtained by manual interpretation, which can be summarized by a linear correlation equation. We expect that these results will be applicable to UAV imagery classification to determine the optimal SSP for each class. Numéro de notice : A2015-692 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2014.12.026 En ligne : https://doi.org/10.1016/j.isprsjprs.2014.12.026 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=78323
in ISPRS Journal of photogrammetry and remote sensing > vol 102 (April 2015) . - pp 14 - 27[article]Automatic registration of coastal remotely sensed imagery by affine invariant feature matching with shoreline constraint / Liang Cheng in Marine geodesy, vol 37 n° 1 (March - May 2014)
[article]
Titre : Automatic registration of coastal remotely sensed imagery by affine invariant feature matching with shoreline constraint Type de document : Article/Communication Auteurs : Liang Cheng, Auteur ; Lihua Tong, Auteur ; Yongxue Liu, Auteur ; et al., Auteur Année de publication : 2014 Article en page(s) : pp 32 - 46 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] appariement d'images
[Termes IGN] couple stéréoscopique
[Termes IGN] littoral
[Termes IGN] Ransac (algorithme)
[Termes IGN] télédétection spatiale
[Termes IGN] trait de côteRésumé : (Auteur) A new approach based on Affine Invariant Feature Matching (AIFM) with a filtering technique is proposed for automatic registration of remotely sensed image in coastal areas. The novelty of this approach is an automatic filtering technique using RANdom SAmple Consensus (RANSAC) with shoreline constraint for AIFM to remove all wrong matches and simultaneously keep as many correct matches as possible. To implement it, a progressive threshold strategy (from small value to large value) is presented to determine an appropriate RANSAC threshold, in which the progressive process is guided by shoreline constraint. The proposed approach (with filtering) is compared with standard AIFM (without filtering) using two typical image pairs in coastal areas. The experimental results indicate that the proposed approach can always provide much better matching results than standard AIFM. Numéro de notice : A2015-162 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/01490419.2013.868382 Date de publication en ligne : 02/08/2013 En ligne : https://doi.org/10.1080/01490419.2013.868382 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=75849
in Marine geodesy > vol 37 n° 1 (March - May 2014) . - pp 32 - 46[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 230-2014011 RAB Revue Centre de documentation En réserve L003 Disponible