Détail de l'auteur
Auteur Shujing Sun |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Active learning with gaussian process classifier for hyperspectral image classification / Shujing Sun in IEEE Transactions on geoscience and remote sensing, vol 53 n° 4 (April 2015)
[article]
Titre : Active learning with gaussian process classifier for hyperspectral image classification Type de document : Article/Communication Auteurs : Shujing Sun, Auteur ; Ping Zhong, Auteur ; Huaitie Xiao, Auteur ; et al., Auteur Année de publication : 2015 Article en page(s) : pp 1746 - 1760 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage automatique
[Termes IGN] classification bayesienne
[Termes IGN] image hyperspectraleRésumé : (Auteur) Gaussian process (GP) classifiers represent a powerful and interesting theoretical framework for the Bayesian classification of hyperspectral images. However, the collection of labeled samples is time consuming and costly for hyperspectral data, and the training samples available are often not enough for an adequate learning of the GP classifier. Moreover, the computational cost of performing inference using GP classifiers scales cubically with the size of the training set. To address the limitations of GP classifiers for hyperspectral image classification, reducing the label cost and keeping the training set in a moderate size, this paper introduces an active learning (AL) strategy to collect the most informative training samples for manual labeling. First, we propose three new AL heuristics based on the probabilistic output of GP classifiers aimed at actively selecting the most uncertain and confusing candidate samples from the unlabeled data. Moreover, we develop an incremental model updating scheme to avoid the repeated training of the GP classifiers during the AL process. The proposed approaches are tested on the classification of two realworld hyperspectral data. Comparison with random sampling method reveals a better accuracy gain and faster convergence with the number of queries, and comparison with recent active learning approaches shows a competitive performance. Experimental results also verified the efficiency of the incremental model updating scheme. Numéro de notice : A2015-171 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2014.2347343 Date de publication en ligne : 29/08/2014 En ligne : https://doi.org/10.1109/TGRS.2014.2347343 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=75887
in IEEE Transactions on geoscience and remote sensing > vol 53 n° 4 (April 2015) . - pp 1746 - 1760[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-2015041 RAB Revue Centre de documentation En réserve L003 Disponible