Détail de l'auteur
Auteur Huaitie Xiao |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Fusion of sparse model based on randomly erased image for SAR occluded target recognition / Zhiqiang He in IEEE Transactions on geoscience and remote sensing, vol 58 n° 11 (November 2020)
[article]
Titre : Fusion of sparse model based on randomly erased image for SAR occluded target recognition Type de document : Article/Communication Auteurs : Zhiqiang He, Auteur ; Huaitie Xiao, Auteur ; Chao Gao, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 7829 - 7844 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] cible cachée
[Termes IGN] détection de cible
[Termes IGN] détection de partie cachée
[Termes IGN] image radar moirée
[Termes IGN] reconstruction d'image
[Termes IGN] représentation parcimonieuseRésumé : (auteur) The recognition of partially occluded targets is a difficult problem in the field of synthetic aperture radar (SAR) target recognition. To eliminate the effect of occlusion, the intuitive idea is to determine the exact location and the size of the occluded area. However, this is very difficult, even impossible in practice. In order to avoid this difficulty and to improve the recognition performance for the partially occluded target, a fusion strategy of the sparse representation (SR) model based on randomly erased images is proposed to recognize the partially occluded target. The proposed method randomly erases some areas many times in both the test samples and the training samples. The erased training samples in each erasure are used to sparsely represent the corresponding erased test sample. Finally, all the SR results are fused to recognize the test sample. The proposed method utilizes random erasure to eliminate the possible occluded region. In addition, this method uses the fusion strategy to overcome under-erasing of the occluded region and erroneous erasure of the unoccluded region. The key parameter of the proposed method is the erasure ratio only. Although the erasure is random, the recognition performance of the method is relatively stable. Therefore, the method can eliminate the influence of occlusion without determining the details of occlusion. The experimental results show that the proposed method is significantly better than the state-of-the-art methods in the case of occlusion. Additionally, the recognition performance of the proposed method is similar to some comparison methods in the case of no occlusion. Numéro de notice : A2020-680 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2984577 Date de publication en ligne : 14/04/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2984577 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96204
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 11 (November 2020) . - pp 7829 - 7844[article]Active learning with gaussian process classifier for hyperspectral image classification / Shujing Sun in IEEE Transactions on geoscience and remote sensing, vol 53 n° 4 (April 2015)
[article]
Titre : Active learning with gaussian process classifier for hyperspectral image classification Type de document : Article/Communication Auteurs : Shujing Sun, Auteur ; Ping Zhong, Auteur ; Huaitie Xiao, Auteur ; et al., Auteur Année de publication : 2015 Article en page(s) : pp 1746 - 1760 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage automatique
[Termes IGN] classification bayesienne
[Termes IGN] image hyperspectraleRésumé : (Auteur) Gaussian process (GP) classifiers represent a powerful and interesting theoretical framework for the Bayesian classification of hyperspectral images. However, the collection of labeled samples is time consuming and costly for hyperspectral data, and the training samples available are often not enough for an adequate learning of the GP classifier. Moreover, the computational cost of performing inference using GP classifiers scales cubically with the size of the training set. To address the limitations of GP classifiers for hyperspectral image classification, reducing the label cost and keeping the training set in a moderate size, this paper introduces an active learning (AL) strategy to collect the most informative training samples for manual labeling. First, we propose three new AL heuristics based on the probabilistic output of GP classifiers aimed at actively selecting the most uncertain and confusing candidate samples from the unlabeled data. Moreover, we develop an incremental model updating scheme to avoid the repeated training of the GP classifiers during the AL process. The proposed approaches are tested on the classification of two realworld hyperspectral data. Comparison with random sampling method reveals a better accuracy gain and faster convergence with the number of queries, and comparison with recent active learning approaches shows a competitive performance. Experimental results also verified the efficiency of the incremental model updating scheme. Numéro de notice : A2015-171 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2014.2347343 Date de publication en ligne : 29/08/2014 En ligne : https://doi.org/10.1109/TGRS.2014.2347343 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=75887
in IEEE Transactions on geoscience and remote sensing > vol 53 n° 4 (April 2015) . - pp 1746 - 1760[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-2015041 RAB Revue Centre de documentation En réserve L003 Disponible