Détail de l'auteur
Auteur Ninni Saarinen |
Documents disponibles écrits par cet auteur (6)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Exploring tree growth allometry using two-date terrestrial laser scanning / Tuomas Yrttimaa in Forest ecology and management, vol 518 (August-15 2022)
[article]
Titre : Exploring tree growth allometry using two-date terrestrial laser scanning Type de document : Article/Communication Auteurs : Tuomas Yrttimaa, Auteur ; Ville Luoma, Auteur ; Ninni Saarinen, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 120303 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] allométrie
[Termes IGN] croissance des arbres
[Termes IGN] diamètre à hauteur de poitrine
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] forêt boréale
[Termes IGN] houppier
[Termes IGN] semis de points
[Termes IGN] série temporelle
[Termes IGN] surface terrière
[Termes IGN] volume en boisRésumé : (auteur) Tree growth is a physio-ecological phenomena of high interest among researchers across disciplines. Observing changes in tree characteristics has conventionally required either repeated measurements of the characteristics of living trees, retrospective measurements of destructively sampled trees, or modelling. The use of close-range sensing techniques such as terrestrial laser scanning (TLS) has enabled non-destructive approaches to reconstruct the three-dimensional (3D) structure of trees and tree communities in space and time. This study aims at improving the understanding of tree allometry in general and interactions between tree growth and its neighbourhood in particular by using two-date point clouds. We investigated how variation in the increments in basal area at the breast height (Δg1.3), basal area at height corresponding to 60% of tree height (Δg06h), and volume of the stem section below 50% of tree height (Δv05h) can be explained with TLS point cloud-based attributes characterizing the spatiotemporal structure of a tree crown and crown neighbourhood, entailing the competitive status of a tree. The analyses were based on 218 trees on 16 sample plots whose 3D characteristics were obtained at the beginning (2014, T1) and at the end of the monitoring period (2019, T2) from multi-scan TLS point clouds using automatic point cloud processing methods. The results of this study showed that, within certain tree communities, strong relationships (|r| > 0.8) were observed between increments in the stem dimensions and the attributes characterizing crown structure and competition. Most often, attributes characterizing the competitive status of a tree, and the crown structure at T1, were the most important attributes to explain variation in the increments of stem dimensions. Linear mixed-effect modelling showed that single attributes could explain up to 35–60% of the observed variation in Δg1.3, Δg06h and Δv05h, depending on the tree species. This tree-level evidence of the allometric relationship between stem growth and crown dynamics can further be used to justify landscape-level analyses based on airborne remote sensing technologies to monitor stem growth through the structure and development of crown structure. This study contributes to the existing knowledge by showing that laser-based close-range sensing is a feasible technology to provide 3D characterization of stem and crown structure, enabling one to quantify structural changes and the competitive status of trees for improved understanding of the underlying growth processes. Numéro de notice : A2022-484 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.foreco.2022.120303 Date de publication en ligne : 22/05/2022 En ligne : https://doi.org/10.1016/j.foreco.2022.120303 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100899
in Forest ecology and management > vol 518 (August-15 2022) . - n° 120303[article]Assessing the dependencies of scots pine (Pinus sylvestris L.) structural characteristics and internal wood property variation / Ville Kankare in Forests, vol 13 n° 3 (March 2022)
[article]
Titre : Assessing the dependencies of scots pine (Pinus sylvestris L.) structural characteristics and internal wood property variation Type de document : Article/Communication Auteurs : Ville Kankare, Auteur ; Ninni Saarinen, Auteur ; Jiri Pyorala, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 397 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] biomasse forestière
[Termes IGN] croissance des arbres
[Termes IGN] dendrochronologie
[Termes IGN] densité du bois
[Termes IGN] diamètre à hauteur de poitrine
[Termes IGN] données lidar
[Termes IGN] éclaircie (sylviculture)
[Termes IGN] Finlande
[Termes IGN] forêt équienne
[Termes IGN] modèle linéaire
[Termes IGN] Pinus sylvestris
[Termes IGN] puits de carbone
[Termes IGN] semis de points
[Termes IGN] structure d'un peuplement forestier
[Termes IGN] variation de densitéRésumé : (auteur) Wood density is well known to vary between tree species as well as within and between trees of a certain species depending on the growing environment causing uncertainties in forest biomass and carbon storage estimation. This has created a need to develop novel methodologies to obtain wood density information over multiple tree communities, landscapes, and ecoregions. Therefore, the aim of this study was to evaluate the dependencies between structural characteristics of Scots pine (Pinus sylvestris L.) tree communities and internal wood property (i.e., mean wood density and ring width) variations at breast height. Terrestrial laser scanning was used to derive the structural characteristics of even-aged Scots pine dominated forests with varying silvicultural treatments. Pearson’s correlations and linear mixed effect models were used to evaluate the interactions. The results show that varying silvicultural treatments did not have a statistically significant effect on the mean wood density. A notably stronger effect was observed between the structural characteristics and the mean ring width within varying treatments. It can be concluded that single time terrestrial laser scanning is capable of capturing the variability of structural characteristics and their interactions with mean ring width within different silvicultural treatments but not the variation of mean wood density. Numéro de notice : A2027-208 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.3390/f13030397 Date de publication en ligne : 28/02/2022 En ligne : https://doi.org/10.3390/f13030397 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100025
in Forests > vol 13 n° 3 (March 2022) . - n° 397[article]Assessing the effects of thinning on stem growth allocation of individual Scots pine trees / Ninni Saarinen in Forest ecology and management, vol 474 ([15/10/2020])
[article]
Titre : Assessing the effects of thinning on stem growth allocation of individual Scots pine trees Type de document : Article/Communication Auteurs : Ninni Saarinen, Auteur ; Ville Kankare, Auteur ; Tuomas Yrttimaa, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : 14 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] croissance des arbres
[Termes IGN] diamètre à hauteur de poitrine
[Termes IGN] données lidar
[Termes IGN] éclaircie (sylviculture)
[Termes IGN] Finlande
[Termes IGN] gestion forestière
[Termes IGN] image captée par drone
[Termes IGN] Pinus sylvestris
[Termes IGN] reconstruction 3D
[Termes IGN] semis de points
[Termes IGN] troncRésumé : (auteur) Forest management alters the growing conditions and thus further development of trees. However, quantitative assessment of forest management on tree growth has been demanding as methodologies for capturing changes comprehensively in space and time have been lacking. Terrestrial laser scanning (TLS) has shown to be capable of providing three-dimensional (3D) tree stem reconstructions required for revealing differences between stem shapes and sizes. In this study, we used 3D reconstructions of tree stems from TLS and an unmanned aerial vehicle (UAV) to investigate how varying thinning treatments and the following growth effects affected stem shape and size of Scots pine (Pinus sylvestris L.) trees. The results showed that intensive thinning resulted in more stem volume and therefore total biomass allocation and carbon uptake compared to the moderate thinning. Relationship between tree height and diameter at breast height (i.e. slenderness) varied between both thinning intensity and type (i.e. from below and above) indicating differing response to thinning and allocation of stem growth of Scots pine trees. Furthermore, intensive thinning, especially from below, produced less variation in relative stem attributes characterizing stem shape and size. Thus, it can be concluded that thinning intensity, type, and the following growth effects have an impact on post-thinning stem shape and size of Scots pine trees. Our study presented detailed measurements on post-thinning stem growth of Scots pines that have been laborious or impracticable before the emergence of detailed 3D technologies. Moreover, the stem reconstructions from TLS and UAV provided variety of attributes characterizing stem shape and size that have not traditionally been feasible to obtain. The study demonstrated that detailed 3D technologies, such as TLS and UAV, provide information that can be used to generate new knowledge for supporting forest management and silviculture as well as improving ecological understanding of boreal forests. Numéro de notice : A2020-623 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.foreco.2020.118344 Date de publication en ligne : 29/06/2020 En ligne : https://doi.org/10.1016/j.foreco.2020.118344 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96020
in Forest ecology and management > vol 474 [15/10/2020] . - 14 p.[article]Detecting and characterizing downed dead wood using terrestrial laser scanning / Tuomas Yrttimaa in ISPRS Journal of photogrammetry and remote sensing, vol 151 (May 2019)
[article]
Titre : Detecting and characterizing downed dead wood using terrestrial laser scanning Type de document : Article/Communication Auteurs : Tuomas Yrttimaa, Auteur ; Ninni Saarinen, Auteur ; Ville Luoma, Auteur ; et al., Auteur Année de publication : 2019 Article en page(s) : pp 76 - 90 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] bois mort
[Termes IGN] détection d'arbres
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] Finlande
[Termes IGN] forêt boréale
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] placette d'échantillonnage
[Termes IGN] qualité des données
[Termes IGN] Ransac (algorithme)
[Termes IGN] rastérisation
[Termes IGN] segmentation
[Termes IGN] semis de points
[Termes IGN] tronc
[Termes IGN] volume en boisRésumé : (Auteur) Dead wood is a key forest structural component for maintaining biodiversity and storing carbon. Despite its important role in a forest ecosystem, quantifying dead wood alongside standing trees has often neglected when investigating the feasibility of terrestrial laser scanning (TLS) in forest inventories. The objective of this study was therefore to develop an automatic method for detecting and characterizing downed dead wood with a diameter exceeding 5 cm using multi-scan TLS data. The developed four-stage algorithm included (1) RANSAC-cylinder filtering, (2) point cloud rasterization, (3) raster image segmentation, and (4) dead wood trunk positioning. For each detected trunk, geometry-related quality attributes such as dimensions and volume were automatically determined from the point cloud. For method development and validation, reference data were collected from 20 sample plots representing diverse southern boreal forest conditions. Using the developed method, the downed dead wood trunks were detected with an overall completeness of 33% and correctness of 76%. Up to 92% of the downed dead wood volume were detected at plot level with mean value of 68%. We were able to improve the detection accuracy of individual trunks with visual interpretation of the point cloud, in which case the overall completeness was increased to 72% with mean proportion of detected dead wood volume of 83%. Downed dead wood volume was automatically estimated with an RMSE of 15.0 m3/ha (59.3%), which was reduced to 6.4 m3/ha (25.3%) as visual interpretation was utilized to aid the trunk detection. The reliability of TLS-based dead wood mapping was found to increase as the dimensions of dead wood trunks increased. Dense vegetation caused occlusion and reduced the trunk detection accuracy. Therefore, when collecting the data, attention must be paid to the point cloud quality. Nevertheless, the results of this study strengthen the feasibility of TLS-based approaches in mapping biodiversity indicators by demonstrating an improved performance in quantifying ecologically most valuable downed dead wood in diverse forest conditions. Numéro de notice : A2019-205 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.03.007 Date de publication en ligne : 16/03/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.03.007 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92668
in ISPRS Journal of photogrammetry and remote sensing > vol 151 (May 2019) . - pp 76 - 90[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019051 RAB Revue Centre de documentation En réserve L003 Disponible 081-2019053 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2019052 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Feasibility of Terrestrial laser scanning for collecting stem volume information from single trees / Ninni Saarinen in ISPRS Journal of photogrammetry and remote sensing, vol 123 (January 2017)
[article]
Titre : Feasibility of Terrestrial laser scanning for collecting stem volume information from single trees Type de document : Article/Communication Auteurs : Ninni Saarinen, Auteur ; Ville Kankare, Auteur ; Mikko Vastaranta, Auteur ; et al., Auteur Année de publication : 2017 Article en page(s) : pp 140 - 158 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] allométrie
[Termes IGN] biomasse forestière
[Termes IGN] forêt boréale
[Termes IGN] modélisation
[Termes IGN] semis de points
[Termes IGN] télémétrie laser terrestre
[Termes IGN] tronc
[Termes IGN] volume en boisRésumé : (Auteur) Interest in measuring forest biomass and carbon stock has increased as a result of the United Nations Framework Convention on Climate Change, and sustainable planning of forest resources is therefore essential. Biomass and carbon stock estimates are based on the large area estimates of growing stock volume provided by national forest inventories (NFIs). The estimates for growing stock volume based on the NFIs depend on stem volume estimates of individual trees. Data collection for formulating stem volume and biomass models is challenging, because the amount of data required is considerable, and the fact that the detailed destructive measurements required to provide these data are laborious. Due to natural diversity, sample size for developing allometric models should be rather large. Terrestrial laser scanning (TLS) has proved to be an efficient tool for collecting information on tree stems. Therefore, we investigated how TLS data for deriving stem volume information from single trees should be collected. The broader context of the study was to determine the feasibility of replacing destructive and laborious field measurements, which have been needed for development of empirical stem volume models, with TLS. The aim of the study was to investigate the effect of the TLS data captured at various distance (i.e. corresponding 25%, 50%, 75% and 100% of tree height) on the accuracy of the stem volume derived. In addition, we examined how multiple TLS point cloud data acquired at various distances improved the results. Analysis was carried out with two ways when multiple point clouds were used: individual tree attributes were derived from separate point clouds and the volume was estimated based on these separate values (multiple-scan A), and point clouds were georeferenced as a combined point cloud from which the stem volume was estimated (multiple-scan B). This permitted us to deal with the practical aspects of TLS data collection and data processing for development of stem volume equations in boreal forests. The results indicated that a scanning distance of approximately 25% of tree height would be optimal for stem volume estimation with TLS if a single scan was utilized in boreal forest conditions studied here and scanning resolution employed. Larger distances increased the uncertainty, especially when the scanning distance was greater than approximately 50% of tree height, because the number of successfully measured diameters from the TLS point cloud was not sufficient for estimating the stem volume. When two TLS point clouds were utilized, the accuracy of stem volume estimates was improved: RMSE decreased from 12.4% to 6.8%. When two point clouds were processed separately (i.e. tree attributes were derived from separate point clouds and then combined) more accurate results were obtained; smaller RMSE and relative error were achieved compared to processing point clouds together (i.e. tree attributes were derived from a combined point cloud). TLS data collection and processing for the optimal setup in this study required only one sixth of time that was necessary to obtain the field reference. These results helped to further our knowledge on TLS in estimating stem volume in boreal forests studied here and brought us one step closer in providing best practices how a phase-shift TLS can be utilized in collecting data when developing stem volume models. Numéro de notice : A2017-011 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2016.11.012 En ligne : http://dx.doi.org/10.1016/j.isprsjprs.2016.11.012 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=83912
in ISPRS Journal of photogrammetry and remote sensing > vol 123 (January 2017) . - pp 140 - 158[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2017011 RAB Revue Centre de documentation En réserve L003 Disponible 081-2017013 DEP-EXM Revue LASTIG Dépôt en unité Exclu du prêt 081-2017012 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt Urban-Tree-Attribute update using multisource single-tree inventory / Ninni Saarinen in Forests, vol 5 n° 5 (May 2014)Permalink