Détail de l'auteur
Auteur Ning Lu |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Land cover dynamics monitoring with Landsat data in Kunming, China: a cost-effective sampling and modelling scheme using Google Earth imagery and random forests / Ning Lu in Geocarto international, vol 30 n° 1 - 2 (January - February 2015)
[article]
Titre : Land cover dynamics monitoring with Landsat data in Kunming, China: a cost-effective sampling and modelling scheme using Google Earth imagery and random forests Type de document : Article/Communication Auteurs : Ning Lu, Auteur Année de publication : 2015 Article en page(s) : pp 186 - 201 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] coût
[Termes IGN] détection de changement
[Termes IGN] échantillonnage
[Termes IGN] forêt
[Termes IGN] Google Earth
[Termes IGN] image Aqua-MODIS
[Termes IGN] image Terra-MODIS
[Termes IGN] modélisation environnementale
[Termes IGN] occupation du sol
[Termes IGN] surveillance forestière
[Termes IGN] Yunnan (Chine)Résumé : (Auteur) Changes in forest composition impact ecological services, and are considered important factors driving global climate change. A hybrid sampling method along with a modelling approach to map current and past land cover in Kunming, China is reported. MODIS land cover (2001–2011) data-sets were used to detect pixels with no apparent change. Around 3000 ‘no change points’ were systematically selected and sampled using Google Earth’s high-resolution imagery. Thirty-five per cent of these points were verified and used for training and validation. We used Random forests to classify multi-temporal Landsat imagery. Results show that forest cover has had a net decrease of 14385 ha (1.3% of forest area), which was primary converted to shrublands (11%), urban and barren land (2.7%) and agriculture (2.5%). Our validation indicates an overall accuracy (Kappa) of 82%. Our methodology can be used to consistently map the dynamics of land cover change in similar areas with minimum costs. Numéro de notice : A2015-302 Affiliation des auteurs : non IGN Thématique : FORET/GEOMATIQUE/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2014.894583 En ligne : https://doi.org/10.1080/10106049.2014.894583 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=76503
in Geocarto international > vol 30 n° 1 - 2 (January - February 2015) . - pp 186 - 201[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 059-2015011 RAB Revue Centre de documentation En réserve L003 Disponible