Détail de l'auteur
Auteur Rubén Marrero |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
A novel negative abundance‐oriented hyperspectral unmixing algorithm / Rubén Marrero in IEEE Transactions on geoscience and remote sensing, vol 53 n° 7 (July 2015)
[article]
Titre : A novel negative abundance‐oriented hyperspectral unmixing algorithm Type de document : Article/Communication Auteurs : Rubén Marrero, Auteur ; Sebastian Lopez, Auteur ; Gustavo Callicó, Auteur ; et al., Auteur Année de publication : 2015 Article en page(s) : pp 3772 - 3790 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse de mélange spectral d’extrémités multiples
[Termes IGN] analyse des mélanges spectraux
[Termes IGN] image hyperspectrale
[Termes IGN] propagation d'erreur
[Termes IGN] variabilitéRésumé : (Auteur) Spectral unmixing is a popular technique for analyzing remotely sensed hyperspectral data sets with subpixel precision. Over the last few years, many algorithms have been developed for each of the main processing steps involved in spectral unmixing (SU) under the LMM assumption: 1) estimation of the number of endmembers; 2) identification of the spectral signatures of the endmembers; and 3) estimation of the abundance of endmembers in the scene. Although this general processing chain has proven to be effective for unmixing certain types of hyperspectral images, it also has some drawbacks. The first one comes from the fact that the output of each stage is the input of the following one, which favors the propagation of errors within the unmixing chain. A second problem is the huge variability of the results obtained when estimating the number of endmembers of a hyperspectral scene with different state-of-the-art algorithms, which influences the rest of the process. A third issue is the computational complexity of the whole process. To address the aforementioned issues, this paper develops a novel negative abundance-oriented SU algorithm that covers, for the first time in the literature, the main steps involved in traditional hyperspectral unmixing chains. The proposed algorithm can also be easily adapted to a scenario in which the number of endmembers is known in advance and two additional variations of the algorithm are provided to deal with high-noise scenarios and to significantly reduce its execution time, respectively. Our experimental results, conducted using both synthetic and real hyperspectral scenes, indicate that the presented method is highly competitive (in terms of both unmixing accuracy and computational performance) with regard to other SU techniques with similar requirements, while providing a fully self-contained unmixing chain without the need for any input parameters. Numéro de notice : A2015-317 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2014.2383440 En ligne : https://doi.org/10.1109/TGRS.2014.2383440 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=76567
in IEEE Transactions on geoscience and remote sensing > vol 53 n° 7 (July 2015) . - pp 3772 - 3790[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-2015071 RAB Revue Centre de documentation En réserve L003 Disponible