Détail de l'auteur
Auteur Xianngtao Zheng |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Spectral–spatial kernel regularized for hyperspectral image denoising full text / Yuan Yuan in IEEE Transactions on geoscience and remote sensing, vol 53 n° 7 (July 2015)
[article]
Titre : Spectral–spatial kernel regularized for hyperspectral image denoising full text Type de document : Article/Communication Auteurs : Yuan Yuan, Auteur ; Xianngtao Zheng, Auteur ; Xiaoqiang Lu, Auteur Année de publication : 2015 Article en page(s) : pp 3815 - 3832 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] filtrage du bruit
[Termes IGN] filtre adaptatif
[Termes IGN] image hyperspectrale
[Termes IGN] méthode fondée sur le noyauRésumé : (Auteur) Noise contamination is a ubiquitous problem in hyperspectral images (HSIs), which is a challenging and promising theme in many remote sensing applications. A large number of methods have been proposed to remove noise. Unfortunately, most denoising methods fail to take full advantages of the high spectral correlation and to simultaneously consider the specific noise distributions in HSIs. Recently, a spectral-spatial adaptive hyperspectral total variation (SSAHTV) was proposed and obtained promising results. However, the SSAHTV model is insensitive to the image details, which makes the edges blur. To overcome all of these drawbacks, a spectral-spatial kernel method for HSI denoising is proposed in this paper. The proposed method is inspired by the observation that the spectral-spatial information is highly redundant in HSIs, which is sufficient to estimate the clear images. In this paper, a spectral-spatial kernel regularization is proposed to maintain the spectral correlations in spectral dimension and to match the original structure between two spatial dimensions. Moreover, an adaptive mechanism is developed to balance the fidelity term according to different noise distributions in each band. Therefore, it cannot only suppress noise in the high-noise band but also preserve information in the low-noise band. The reliability of the proposed method in removing noise is experimentally proved on both simulated data and real data. Numéro de notice : A2015-318 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2014.2385082 En ligne : https://doi.org/10.1109/TGRS.2014.2385082 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=76569
in IEEE Transactions on geoscience and remote sensing > vol 53 n° 7 (July 2015) . - pp 3815 - 3832[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-2015071 RAB Revue Centre de documentation En réserve L003 Disponible