Détail de l'auteur
Auteur Giona Matasci |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Semisupervised transfer component analysis for domain adaptation in remote sensing image classification / Giona Matasci in IEEE Transactions on geoscience and remote sensing, vol 53 n° 7 (July 2015)
[article]
Titre : Semisupervised transfer component analysis for domain adaptation in remote sensing image classification Type de document : Article/Communication Auteurs : Giona Matasci, Auteur ; Michele Volpi, Auteur ; Mikhail Kanevski, Auteur ; et al., Auteur Année de publication : 2015 Article en page(s) : pp 3550 - 3564 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse comparative
[Termes IGN] classification à base de connaissances
[Termes IGN] classification automatique
[Termes IGN] découverte de connaissances
[Termes IGN] extraction automatique
[Termes IGN] méthode fondée sur le noyau
[Termes IGN] occupation du solRésumé : (Auteur) In this paper, we study the problem of feature extraction for knowledge transfer between multiple remotely sensed images in the context of land-cover classification. Several factors such as illumination, atmospheric, and ground conditions cause radiometric differences between images of similar scenes acquired on different geographical areas or over the same scene but at different time instants. Accordingly, a change in the probability distributions of the classes is observed. The purpose of this work is to statistically align in the feature space an image of interest that still has to be classified (the target image) to another image whose ground truth is already available (the source image). Following a specifically designed feature extraction step applied to both images, we show that classifiers trained on the source image can successfully predict the classes of the target image despite the shift that has occurred. In this context, we analyze a recently proposed domain adaptation method aiming at reducing the distance between domains, Transfer Component Analysis, and assess the potential of its unsupervised and semisupervised implementations. In particular, with a dedicated study of its key additional objectives, namely the alignment of the projection with the labels and the preservation of the local data structures, we demonstrate the advantages of Semisupervised Transfer Component Analysis. We compare this approach with other both linear and kernel-based feature extraction techniques. Experiments on multi- and hyperspectral acquisitions show remarkable cross- image classification performances for the considered strategy, thus confirming its suitability when applied to remotely sensed images. Numéro de notice : A2015-319 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2014.2377785 En ligne : https://doi.org/10.1109/TGRS.2014.2377785 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=76570
in IEEE Transactions on geoscience and remote sensing > vol 53 n° 7 (July 2015) . - pp 3550 - 3564[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-2015071 RAB Revue Centre de documentation En réserve L003 Disponible