Détail de l'auteur
Auteur Sicong Liu |
Documents disponibles écrits par cet auteur (4)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
A novel fire index-based burned area change detection approach using Landsat-8 OLI data / Sicong Liu in European journal of remote sensing, vol 53 n° 1 (2020)
[article]
Titre : A novel fire index-based burned area change detection approach using Landsat-8 OLI data Type de document : Article/Communication Auteurs : Sicong Liu, Auteur ; Yongjie Zheng, Auteur ; Michele Dalponte, Auteur ; Xiaohua Tong, Auteur Année de publication : 2020 Article en page(s) : pp 104 - 112 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] brûlis
[Termes IGN] détection de changement
[Termes IGN] image Landsat-OLI
[Termes IGN] image multibande
[Termes IGN] image multitemporelle
[Termes IGN] incendie de forêt
[Termes IGN] seuillage d'image
[Termes IGN] signature spectraleRésumé : (auteur) Change detection from multi-temporal remote sensing images is an effective way to identify the burned areas after forest fires. However, the complex image scenario and the similar spectral signatures in multispectral bands may lead to many false positive errors, which make it difficult to exact the burned areas accurately. In this paper, a novel-burned area change detection approach is proposed. It is designed based on a new Normalized Burn Ratio-SWIR (NBRSWIR) index and an automatic thresholding algorithm. The effectiveness of the proposed approach is validated on three Landsat-8 data sets presenting various fire disaster events worldwide. Compared to eight index-based detection methods that developed in the literature, the proposed approach has the best performance in terms of class separability (2.49, 1.74 and 2.06) and accuracy (98.93%, 98.57% and 99.51%) in detecting the burned areas. Simultaneously, it can also better suppress the complex irrelevant changes in the background. Numéro de notice : A2020-167 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/22797254.2020.1738900 Date de publication en ligne : 16/03/2020 En ligne : https://doi.org/10.1080/22797254.2020.1738900 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94836
in European journal of remote sensing > vol 53 n° 1 (2020) . - pp 104 - 112[article]Unsupervised multitemporal spectral unmixing for detecting multiple changes in hyperspectral images / Sicong Liu in IEEE Transactions on geoscience and remote sensing, vol 54 n° 5 (May 2016)
[article]
Titre : Unsupervised multitemporal spectral unmixing for detecting multiple changes in hyperspectral images Type de document : Article/Communication Auteurs : Sicong Liu, Auteur ; Lorenzo Bruzzone, Auteur ; Francesca Bovolo, Auteur ; Peijun Du, Auteur Année de publication : 2016 Article en page(s) : pp 2733 - 2748 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] analyse des mélanges spectraux
[Termes IGN] analyse infrapixellaire
[Termes IGN] détection de changement
[Termes IGN] image hyperspectrale
[Termes IGN] image multitemporelleRésumé : (Auteur) This paper presents a novel multitemporal spectral unmixing (MSU) approach to address the challenging multiple-change detection problem in bitemporal hyperspectral (HS) images. Differently from the state-of-the-art methods that are mainly designed at a pixel level, the proposed technique investigates the spectral-temporal variations at a subpixel level. The considered change detection (CD) problem is analyzed in a multitemporal domain, where a bitemporal spectral mixture model is defined to analyze the spectral composition within a pixel. Distinct multitemporal endmembers (MT-EMs) are extracted according to an automatic and unsupervised technique. Then, a change analysis strategy is designed to distinguish the change and no-change MT-EMs. An endmember-grouping scheme is applied to the changed MT-EMs to detect the unique change classes. Finally, the considered multiple-change detection problem is solved by analyzing the abundances of the change and no-change classes and their contribution to each pixel. The proposed approach has been validated on both simulated and real multitemporal HS data sets presenting multiple changes. Experimental results confirmed the effectiveness of the proposed method. Numéro de notice : A2016-846 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2015.2505183 En ligne : https://doi.org/10.1109/TGRS.2015.2505183 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=82927
in IEEE Transactions on geoscience and remote sensing > vol 54 n° 5 (May 2016) . - pp 2733 - 2748[article]Sequential spectral change vector analysis for iteratively discovering and detecting multiple changes in hyperspectral images / Sicong Liu in IEEE Transactions on geoscience and remote sensing, vol 53 n° 8 (August 2015)
[article]
Titre : Sequential spectral change vector analysis for iteratively discovering and detecting multiple changes in hyperspectral images Type de document : Article/Communication Auteurs : Sicong Liu, Auteur ; Lorenzo Bruzzone, Auteur ; Francesca Bovolo, Auteur ; et al., Auteur Année de publication : 2015 Article en page(s) : pp 4363 - 4378 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] détection de changement
[Termes IGN] image AVIRIS
[Termes IGN] image EO1-Hyperion
[Termes IGN] image hyperspectrale
[Termes IGN] image multitemporelle
[Termes IGN] méthode des vecteurs de changement
[Termes IGN] représentation du changementRésumé : (Auteur) This paper presents an effective semiautomatic method for discovering and detecting multiple changes (i.e., different kinds of changes) in multitemporal hyperspectral (HS) images. Differently from the state-of-the-art techniques, the proposed method is designed to be sensitive to the small spectral variations that can be identified in HS images but usually are not detectable in multispectral images. The method is based on the proposed sequential spectral change vector analysis, which exploits an iterative hierarchical scheme that at each iteration discovers and identifies a subset of changes. The approach is interactive and semiautomatic and allows one to study in detail the structure of changes hidden in the variations of the spectral signatures according to a top-down procedure. A novel 2-D adaptive spectral change vector representation (ASCVR) is proposed to visualize the changes. At each level this representation is optimized by an automatic definition of a reference vector that emphasizes the discrimination of changes. Finally, an interactive manual change identification is applied for extracting changes in the ASCVR domain. The proposed approach has been tested on three hyperspectral data sets, including both simulated and real multitemporal images showing multiple-change detection problems. Experimental results confirmed the effectiveness of the proposed method. Numéro de notice : A2015-385 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2015.2396686 En ligne : https://doi.org/10.1109/TGRS.2015.2396686 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=76861
in IEEE Transactions on geoscience and remote sensing > vol 53 n° 8 (August 2015) . - pp 4363 - 4378[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-2015081 RAB Revue Centre de documentation En réserve L003 Disponible Random Forest and Rotation Forest for fully polarized SAR image classification using polarimetric and spatial features / Peijun Du in ISPRS Journal of photogrammetry and remote sensing, vol 105 (July 2015)
[article]
Titre : Random Forest and Rotation Forest for fully polarized SAR image classification using polarimetric and spatial features Type de document : Article/Communication Auteurs : Peijun Du, Auteur ; Alim Samat, Auteur ; Björn Waske, Auteur ; Sicong Liu, Auteur ; Zhenhong Li, Auteur Année de publication : 2015 Article en page(s) : pp 38 - 53 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] données polarimétriques
[Termes IGN] image Radarsat
[Termes IGN] polarimétrie radar
[Termes IGN] Rotation Forest classification
[Termes IGN] texture d'imageRésumé : (auteur) Fully Polarimetric Synthetic Aperture Radar (PolSAR) has the advantages of all-weather, day and night observation and high resolution capabilities. The collected data are usually sorted in Sinclair matrix, coherence or covariance matrices which are directly related to physical properties of natural media and backscattering mechanism. Additional information related to the nature of scattering medium can be exploited through polarimetric decomposition theorems. Accordingly, PolSAR image classification gains increasing attentions from remote sensing communities in recent years. However, the above polarimetric measurements or parameters cannot provide sufficient information for accurate PolSAR image classification in some scenarios, e.g. in complex urban areas where different scattering mediums may exhibit similar PolSAR response due to couples of unavoidable reasons. Inspired by the complementarity between spectral and spatial features bringing remarkable improvements in optical image classification, the complementary information between polarimetric and spatial features may also contribute to PolSAR image classification. Therefore, the roles of textural features such as contrast, dissimilarity, homogeneity and local range, morphological profiles (MPs) in PolSAR image classification are investigated using two advanced ensemble learning (EL) classifiers: Random Forest and Rotation Forest. Supervised Wishart classifier and support vector machines (SVMs) are used as benchmark classifiers for the evaluation and comparison purposes. Experimental results with three Radarsat-2 images in quad polarization mode indicate that classification accuracies could be significantly increased by integrating spatial and polarimetric features using ensemble learning strategies. Rotation Forest can get better accuracy than SVM and Random Forest, in the meantime, Random Forest is much faster than Rotation Forest. Numéro de notice : A2015-706 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2015.03.002 En ligne : https://doi.org/10.1016/j.isprsjprs.2015.03.002 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=78342
in ISPRS Journal of photogrammetry and remote sensing > vol 105 (July 2015) . - pp 38 - 53[article]