Détail de l'auteur
Auteur James B. McCarter |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Effects of LiDAR point density and landscape context on estimates of urban forest biomass / Kunwar K. Singh in ISPRS Journal of photogrammetry and remote sensing, vol 101 (March 2015)
[article]
Titre : Effects of LiDAR point density and landscape context on estimates of urban forest biomass Type de document : Article/Communication Auteurs : Kunwar K. Singh, Auteur ; Gang Chen, Auteur ; James B. McCarter, Auteur ; Ross K. Meentemeyer, Auteur Année de publication : 2015 Article en page(s) : pp 310 - 322 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] biomasse
[Termes IGN] Caroline du Nord (Etats-Unis)
[Termes IGN] composition d'un peuplement forestier
[Termes IGN] densité des points
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] feuillu
[Termes IGN] forêt urbaine
[Termes IGN] régression multipleRésumé : (auteur) Light Detection and Ranging (LiDAR) data is being increasingly used as an effective alternative to conventional optical remote sensing to accurately estimate aboveground forest biomass ranging from individual tree to stand levels. Recent advancements in LiDAR technology have resulted in higher point densities and improved data accuracies accompanied by challenges for procuring and processing voluminous LiDAR data for large-area assessments. Reducing point density lowers data acquisition costs and overcomes computational challenges for large-area forest assessments. However, how does lower point density impact the accuracy of biomass estimation in forests containing a great level of anthropogenic disturbance? We evaluate the effects of LiDAR point density on the biomass estimation of remnant forests in the rapidly urbanizing region of Charlotte, North Carolina, USA. We used multiple linear regression to establish a statistical relationship between field-measured biomass and predictor variables derived from LiDAR data with varying densities. We compared the estimation accuracies between a general Urban Forest type and three Forest Type models (evergreen, deciduous, and mixed) and quantified the degree to which landscape context influenced biomass estimation. The explained biomass variance of the Urban Forest model, using adjusted R2, was consistent across the reduced point densities, with the highest difference of 11.5% between the 100% and 1% point densities. The combined estimates of Forest Type biomass models outperformed the Urban Forest models at the representative point densities (100% and 40%). The Urban Forest biomass model with development density of 125 m radius produced the highest adjusted R2 (0.83 and 0.82 at 100% and 40% LiDAR point densities, respectively) and the lowest RMSE values, highlighting a distance impact of development on biomass estimation. Our evaluation suggests that reducing LiDAR point density is a viable solution to regional-scale forest assessment without compromising the accuracy of biomass estimates, and these estimates can be further improved using development density. Numéro de notice : A2015-471 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2014.12.021 En ligne : https://doi.org/10.1016/j.isprsjprs.2014.12.021 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=77173
in ISPRS Journal of photogrammetry and remote sensing > vol 101 (March 2015) . - pp 310 - 322[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 081-2015031 RAB Revue Centre de documentation En réserve L003 Disponible