Détail de l'auteur
Auteur Liguo Wang |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
A double-strategy-check active learning algorithm for hyperspectral image classification / Ying Cui in Photogrammetric Engineering & Remote Sensing, PERS, vol 85 n° 11 (November 2019)
[article]
Titre : A double-strategy-check active learning algorithm for hyperspectral image classification Type de document : Article/Communication Auteurs : Ying Cui, Auteur ; Xiaowei Ji, Auteur ; Kai Xu, Auteur ; Liguo Wang, Auteur Année de publication : 2019 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] algorithme d'apprentissage
[Termes IGN] apprentissage semi-dirigé
[Termes IGN] classification semi-dirigée
[Termes IGN] image hyperspectraleRésumé : (Auteur) Applying limited labeled samples to improve classification results is a challenge in hyperspectral images. Active Learning (AL) and Semisupervised Learning (SSL) are two promising techniques to achieve this challenge. Combining AL with SSL is an excellent idea for hyperspectral image classification. The traditional method, such as the Collaborative Active and Semisupervised Learning algorithm (CASSL), may introduce many incorrect pseudolabels and shows premature convergence. To overcome these drawbacks, a novel framework named Double-Strategy-Check Collaborative Active and Semisupervised Learning (DSC-CASSL) is proposed in this paper. This framework combines two different AL algorithms and SSL in a collaborative mode. The double-strategy verification can gradually improve the pseudolabeling accuracy and facilitate SSL. We evaluate the performance of DSC-CASSL on four hyperspectral data sets and compare it with that of four hyperspectral image classification methods. Our results suggest that DSC-CASSL leads to consistent improvement for hyperspectral image classification. Numéro de notice : A2019-526 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.14358/PERS.85.11.841 Date de publication en ligne : 01/11/2019 En ligne : https://doi.org/10.14358/PERS.85.11.841 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94067
in Photogrammetric Engineering & Remote Sensing, PERS > vol 85 n° 11 (November 2019)[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2019111 RAB Revue Centre de documentation En réserve L003 Disponible On spectral unmixing resolution using extended support vector machines / Xiaofeng Li in IEEE Transactions on geoscience and remote sensing, vol 53 n° 9 (September 2015)
[article]
Titre : On spectral unmixing resolution using extended support vector machines Type de document : Article/Communication Auteurs : Xiaofeng Li, Auteur ; Xiuping Jia, Auteur ; Liguo Wang, Auteur ; Kai Zhao, Auteur Année de publication : 2015 Article en page(s) : pp 4985 - 4996 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse des mélanges spectraux
[Termes IGN] analyse infrapixellaire
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] classification pixellaire
[Termes IGN] classification spectraleRésumé : (Auteur) Due to the limited spatial resolution of multispectral/hyperspectral data, mixed pixels widely exist and various spectral unmixing techniques have been developed for information extraction at the subpixel level in recent years. One of the challenging problems in spectral mixture analysis is how to model the data of a primary class. Given that the within-class spectral variability (WSV) is inevitable, it is more realistic to associate a group of representative spectra with a pure class. The unmixing method using the extended support vector machines (eSVMs) has handled this problem effectively. However, it has simplified WSV in the mixed cases. In this paper, a further development of eSVMs is presented to address two problems in multiple-endmember spectral mixture analysis: 1) one mixed pixel may be unmixed into different fractions (model overlap); and 2) one fraction may correspond to a group of mixed pixels (fraction overlap). Then, spectral unmixing resolution (SUR) is introduced to characterize how finely the mixture in a mixed pixel can be quantified. The quantitative relationship between SUR and WSV of endmembers is derived via a geometry analysis in support vector machine feature space. Thus, the possible SUR can be estimated when multiple endmembers for each class are given. Moreover, if the requirement of SUR is fixed, the acceptance level of WSV is then limited, which can be used as a guide to remove outliers and purify endmembers for each primary class. Experiments are presented to illustrate model and fraction overlap problems and the application of SUR in uncertainty analysis of spectral unmixing. Numéro de notice : A2015-527 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2015.2415587 Date de publication en ligne : 21/04/2015 En ligne : https://doi.org/10.1109/TGRS.2015.2415587 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=77555
in IEEE Transactions on geoscience and remote sensing > vol 53 n° 9 (September 2015) . - pp 4985 - 4996[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-2015091 SL Revue Centre de documentation Revues en salle Disponible