Détail de l'auteur
Auteur Kai Zhao |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Microwave unmixing with video segmentation for inferring broadleaf and needleleaf brightness temperatures and abundances from mixed forest observations / Lingjia Gu in IEEE Transactions on geoscience and remote sensing, vol 54 n° 1 (January 2016)
[article]
Titre : Microwave unmixing with video segmentation for inferring broadleaf and needleleaf brightness temperatures and abundances from mixed forest observations Type de document : Article/Communication Auteurs : Lingjia Gu, Auteur ; Kai Zhao, Auteur ; Bormin Huang, Auteur Année de publication : 2016 Article en page(s) : pp 279 - 286 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] aiguille
[Termes IGN] densité de la végétation
[Termes IGN] feuille (végétation)
[Termes IGN] peuplement forestier
[Termes IGN] peuplement mélangé
[Termes IGN] segmentation d'image
[Termes IGN] traitement d'image
[Termes IGN] vidéo numériqueRésumé : (Auteur) Passive microwave sensors have better capability of penetrating forest layers to obtain more information from forest canopy and ground surface. For forest management, it is useful to study passive microwave signals from forests. Passive microwave sensors can detect signals from needleleaf, broadleaf, and mixed forests. The observed brightness temperature of a mixed forest can be approximated by a linear combination of the needleleaf and broadleaf brightness temperatures weighted by their respective abundances. For a mixed forest observed by an N-band microwave radiometer with horizontal and vertical polarizations, there are 2 N observed brightness temperatures. It is desirable to infer 4 N + 2 unknowns: 2 N broadleaf brightness temperatures, 2 N needleleaf brightness temperatures, 1 broadleaf abundance, and 1 needleleaf abundance. This is a challenging underdetermined problem. In this paper, we devise a novel method that combines microwave unmixing with video segmentation for inferring broadleaf and needleleaf brightness temperatures and abundances from mixed forests. We propose an improved Otsu method for video segmentation to infer broadleaf and needleleaf abundances. The brightness temperatures of needleleaf and broadleaf trees can then be solved by the nonnegative least squares solution. For our mixed forest unmixing problem, it turns out that the ordinary least squares solution yields the desired positive brightness temperatures. The experimental results demonstrate that the proposed method is able to unmix broadleaf and needleleaf brightness temperatures and abundances well. The absolute differences between the reconstructed and observed brightness temperatures of the mixed forest are well within 1 K. Numéro de notice : A2016-069 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2015.2455151 En ligne : http://dx.doi.org/10.1109/TGRS.2015.2455151 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=79831
in IEEE Transactions on geoscience and remote sensing > vol 54 n° 1 (January 2016) . - pp 279 - 286[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-2016011 SL Revue Centre de documentation Revues en salle Disponible On spectral unmixing resolution using extended support vector machines / Xiaofeng Li in IEEE Transactions on geoscience and remote sensing, vol 53 n° 9 (September 2015)
[article]
Titre : On spectral unmixing resolution using extended support vector machines Type de document : Article/Communication Auteurs : Xiaofeng Li, Auteur ; Xiuping Jia, Auteur ; Liguo Wang, Auteur ; Kai Zhao, Auteur Année de publication : 2015 Article en page(s) : pp 4985 - 4996 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse des mélanges spectraux
[Termes IGN] analyse infrapixellaire
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] classification pixellaire
[Termes IGN] classification spectraleRésumé : (Auteur) Due to the limited spatial resolution of multispectral/hyperspectral data, mixed pixels widely exist and various spectral unmixing techniques have been developed for information extraction at the subpixel level in recent years. One of the challenging problems in spectral mixture analysis is how to model the data of a primary class. Given that the within-class spectral variability (WSV) is inevitable, it is more realistic to associate a group of representative spectra with a pure class. The unmixing method using the extended support vector machines (eSVMs) has handled this problem effectively. However, it has simplified WSV in the mixed cases. In this paper, a further development of eSVMs is presented to address two problems in multiple-endmember spectral mixture analysis: 1) one mixed pixel may be unmixed into different fractions (model overlap); and 2) one fraction may correspond to a group of mixed pixels (fraction overlap). Then, spectral unmixing resolution (SUR) is introduced to characterize how finely the mixture in a mixed pixel can be quantified. The quantitative relationship between SUR and WSV of endmembers is derived via a geometry analysis in support vector machine feature space. Thus, the possible SUR can be estimated when multiple endmembers for each class are given. Moreover, if the requirement of SUR is fixed, the acceptance level of WSV is then limited, which can be used as a guide to remove outliers and purify endmembers for each primary class. Experiments are presented to illustrate model and fraction overlap problems and the application of SUR in uncertainty analysis of spectral unmixing. Numéro de notice : A2015-527 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2015.2415587 Date de publication en ligne : 21/04/2015 En ligne : https://doi.org/10.1109/TGRS.2015.2415587 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=77555
in IEEE Transactions on geoscience and remote sensing > vol 53 n° 9 (September 2015) . - pp 4985 - 4996[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-2015091 SL Revue Centre de documentation Revues en salle Disponible