Détail de l'auteur
Auteur José M. Bioucas-Dias |
Documents disponibles écrits par cet auteur (7)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Sparse distributed multitemporal hyperspectral unmixing / Jakob Sigurdsson in IEEE Transactions on geoscience and remote sensing, vol 55 n° 11 (November 2017)
[article]
Titre : Sparse distributed multitemporal hyperspectral unmixing Type de document : Article/Communication Auteurs : Jakob Sigurdsson, Auteur ; Magnus Orn Ulfarsson, Auteur ; Johannes R. Sveinsson, Auteur ; José M. Bioucas-Dias, Auteur Année de publication : 2017 Article en page(s) : pp 6069 - 6084 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse des mélanges spectraux
[Termes IGN] image hyperspectrale
[Termes IGN] image multitemporelleRésumé : (Auteur) Blind hyperspectral unmixing jointly estimates spectral signatures and abundances in hyperspectral images (HSIs). Hyperspectral unmixing is a powerful tool for analyzing hyperspectral data. However, the usual huge size of HSIs may raise difficulties for classical unmixing algorithms, namely, due to limitations of the hardware used. Therefore, some researchers have considered distributed algorithms. In this paper, we develop a distributed hyperspectral unmixing algorithm that uses the alternating direction method of multipliers and ℓ1 sparse regularization. The hyperspectral unmixing problem is split into a number of smaller subproblems that are individually solved, and then the solutions are combined. A key feature of the proposed algorithm is that each subproblem does not need to have access to the whole HSI. The algorithm may also be applied to multitemporal HSIs with due adaptations accounting for variability that often appears in multitemporal images. The effectiveness of the proposed algorithm is evaluated using both simulated data and real HSIs. Numéro de notice : A2017-742 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2017.2720539 En ligne : https://doi.org/10.1109/TGRS.2017.2720539 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=88776
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 11 (November 2017) . - pp 6069 - 6084[article]Robust collaborative nonnegative matrix factorization for hyperspectral unmixing / Jun Li in IEEE Transactions on geoscience and remote sensing, vol 54 n° 10 (October 2016)
[article]
Titre : Robust collaborative nonnegative matrix factorization for hyperspectral unmixing Type de document : Article/Communication Auteurs : Jun Li, Auteur ; José M. Bioucas-Dias, Auteur ; Antonio J. Plaza, Auteur ; Lin Liu, Auteur Année de publication : 2016 Article en page(s) : pp 6076 - 6090 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse des mélanges spectraux
[Termes IGN] factorisation de matrice non-négative
[Termes IGN] modèle de mélange multilinéaire
[Termes IGN] signature spectraleRésumé : (auteur) Spectral unmixing is an important technique for remotely sensed hyperspectral data exploitation. It amounts to identifying a set of pure spectral signatures, which are called endmembers, and their corresponding fractional, draftrulesabun-dances in each pixel of the hyperspectral image. Over the last years, different algorithms have been developed for each of the three main steps of the spectral unmixing chain: 1) estimation of the number of endmembers in a scene; 2) identification of the spectral signatures of the endmembers; and 3) estimation of the fractional abundance of each endmember in each pixel of the scene. However, few algorithms can perform all the stages involved in the hyperspectral unmixing process. Such algorithms are highly desirable to avoid the propagation of errors within the chain. In this paper, we develop a new algorithm, which is termed robust collaborative nonnegative matrix factorization (R-CoNMF), that can perform the three steps of the hyperspectral unmixing chain. In comparison with other conventional methods, R-CoNMF starts with an overestimated number of endmembers and removes the redundant endmembers by means of collaborative regularization. Our experimental results indicate that the proposed method provides better or competitive performance when compared with other widely used methods. Numéro de notice : A2016-868 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2016.2580702 En ligne : http://dx.doi.org/10.1109/TGRS.2016.2580702 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=83025
in IEEE Transactions on geoscience and remote sensing > vol 54 n° 10 (October 2016) . - pp 6076 - 6090[article]Semiblind hyperspectral unmixing in the presence of spectral library mismatches / Xiao Fu in IEEE Transactions on geoscience and remote sensing, vol 54 n° 9 (September 2016)
[article]
Titre : Semiblind hyperspectral unmixing in the presence of spectral library mismatches Type de document : Article/Communication Auteurs : Xiao Fu, Auteur ; Wing-Kin Ma, Auteur ; José M. Bioucas-Dias, Auteur ; Tsung-Han Chan, Auteur Année de publication : 2016 Article en page(s) : pp 5171 - 5184 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse des mélanges spectraux
[Termes IGN] données clairsemées
[Termes IGN] image hyperspectrale
[Termes IGN] itération
[Termes IGN] régressionRésumé : (Auteur) The dictionary-aided sparse regression (SR) approach has recently emerged as a promising alternative to hyperspectral unmixing in remote sensing. By using an available spectral library as a dictionary, the SR approach identifies the underlying materials in a given hyperspectral image by selecting a small subset of spectral samples in the dictionary to represent the whole image. A drawback with the current SR developments is that an actual spectral signature in the scene is often assumed to have zero mismatch with its corresponding dictionary sample, and such an assumption is considered too ideal in practice. In this paper, we tackle the spectral signature mismatch problem by proposing a dictionary-adjusted nonconvex sparsity-encouraging regression (DANSER) framework. The main idea is to incorporate dictionary-correcting variables in an SR formulation. A simple and low per-iteration complexity algorithm is tailor-designed for practical realization of DANSER. Using the same dictionary-correcting idea, we also propose a robust subspace solution for dictionary pruning. Extensive simulations and real-data experiments show that the proposed method is effective in mitigating the undesirable spectral signature mismatch effects. Numéro de notice : A2016-896 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2016.2557340 En ligne : https://doi.org/10.1109/TGRS.2016.2557340 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=83087
in IEEE Transactions on geoscience and remote sensing > vol 54 n° 9 (September 2016) . - pp 5171 - 5184[article]HYCA: A new technique for hyperspectral compressive sensing / G. Martin in IEEE Transactions on geoscience and remote sensing, vol 53 n° 5 (mai 2015)
[article]
Titre : HYCA: A new technique for hyperspectral compressive sensing Type de document : Article/Communication Auteurs : G. Martin, Auteur ; José M. Bioucas-Dias, Auteur ; Antonio J. Plaza, Auteur Année de publication : 2015 Article en page(s) : pp 2819 - 2831 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] capteur hyperspectral
[Termes IGN] compression d'image
[Termes IGN] coordonnées géographiques
[Termes IGN] corrélation
[Termes IGN] image hyperspectrale
[Termes IGN] reconstruction d'imageRésumé : (Auteur) Hyperspectral imaging relies on sophisticated acquisition and data processing systems able to acquire, process, store, and transmit hundreds or thousands of image bands from a given area of interest. In this paper, we exploit the high correlation existing among the components of the hyperspectral data sets to introduce a new compressive sensing methodology, termed hyperspectral coded aperture (HYCA), which largely reduces the number of measurements necessary to correctly reconstruct the original data. HYCA relies on two central properties of most hyperspectral images, usually termed data cubes: 1) the spectral vectors live on a low-dimensional subspace; and 2) the spectral bands present high correlation in both the spatial and the spectral domain. The former property allows to represent the data vectors using a small number of coordinates. In this paper, we particularly exploit the high spatial correlation mentioned in the latter property, which implies that each coordinate is piecewise smooth and thus compressible using local differences. The measurement matrix computes a small number of random projections for every spectral vector, which is connected with coded aperture schemes. The reconstruction of the data cube is obtained by solving a convex optimization problem containing a data term linked to the measurement matrix and a total variation regularizer. The solution of this optimization problem is obtained by an instance of the alternating direction method of multipliers that decomposes very hard problems into a cyclic sequence of simpler problems. In order to address the need to set up the parameters involved in the HYCA algorithm, we also develop a constrained version of HYCA (C-HYCA), in which all the parameters can be automatically estimated, which is an important aspect for practical application of the algorithm. A series of experiments with simulated and real data shows the effectiveness of HYCA and C-HYCA, indicating their potential in real-world applications. Numéro de notice : A2015-520 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2014.2365534 En ligne : https://doi.org/10.1109/TGRS.2014.2365534 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=77527
in IEEE Transactions on geoscience and remote sensing > vol 53 n° 5 (mai 2015) . - pp 2819 - 2831[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-2015051 RAB Revue Centre de documentation En réserve L003 Disponible Interferometric phase image estimation via sparse coding in the complex domain / Hao Hongxing in IEEE Transactions on geoscience and remote sensing, vol 53 n° 5 (mai 2015)
[article]
Titre : Interferometric phase image estimation via sparse coding in the complex domain Type de document : Article/Communication Auteurs : Hao Hongxing, Auteur ; José M. Bioucas-Dias, Auteur ; Vladimir Katkovnik, Auteur Année de publication : 2015 Article en page(s) : pp 2587 - 2602 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] apprentissage dirigé
[Termes IGN] état de l'art
[Termes IGN] filtrage du bruit
[Termes IGN] image radar moirée
[Termes IGN] interféromètrie par radar à antenne synthétique
[Termes IGN] matrice creuse
[Termes IGN] phase
[Termes IGN] programmation par contraintes
[Termes IGN] régression
[Termes IGN] restauration d'imageRésumé : (auteur) This paper addresses interferometric phase image estimation, i.e., the estimation of phase modulo-2π images from sinusoidal 2π-periodic and noisy observations. These degradation mechanisms make interferometric phase image estimation a quite challenging problem. We tackle this challenge by reformulating the true estimation problem as a sparse regression, often termed sparse coding, in the complex domain. Following the standard procedure in patch-based image restoration, the image is partitioned into small overlapping square patches, and the vector corresponding to each patch is modeled as a sparse linear combination of vectors, termed the atoms, taken from a set called dictionary. Aiming at optimal sparse representations, and thus at optimal noise removing capabilities, the dictionary is learned from the data that it represents via matrix factorization with sparsity constraints on the code (i.e., the regression coefficients) enforced by the ℓ1 norm. The effectiveness of the new sparse-coding-based approach to interferometric phase estimation, termed the SpInPHASE, is illustrated in a series of experiments with simulated and real data where it outperforms the state-of-the-art. Numéro de notice : A2015-630 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2014.2361919 En ligne : https://doi.org/10.1109/TGRS.2014.2361919 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=78118
in IEEE Transactions on geoscience and remote sensing > vol 53 n° 5 (mai 2015) . - pp 2587 - 2602[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-2015051 RAB Revue Centre de documentation En réserve L003 Disponible Generalized composite kernel framework for hyperspectral image classification / J. Li in IEEE Transactions on geoscience and remote sensing, vol 51 n° 9 (September 2013)PermalinkReconstruction of backscatter and extinction coefficients in Lidar: a stochastic filtering approach / José M. Bioucas-Dias in IEEE Transactions on geoscience and remote sensing, vol 42 n° 2 (February 2004)Permalink