Détail de l'auteur
Auteur Heather McNairn |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Object-based crop classification using multi-temporal SPOT-5 imagery and textural features with a Random Forest classifier / Huanxue Zhang in Geocarto international, vol 33 n° 10 (October 2018)
[article]
Titre : Object-based crop classification using multi-temporal SPOT-5 imagery and textural features with a Random Forest classifier Type de document : Article/Communication Auteurs : Huanxue Zhang, Auteur ; Qiangzi Li, Auteur ; Jiangui Liu, Auteur ; Taifeng Dong, Auteur ; Heather McNairn, Auteur Année de publication : 2018 Article en page(s) : pp 1017 - 1035 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse d'image orientée objet
[Termes IGN] bande spectrale
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] corrélation par régions de niveaux de gris
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image SPOT 5
[Termes IGN] indice de végétation
[Termes IGN] limite de terrain
[Termes IGN] Ontario (Canada)
[Termes IGN] réflectance spectrale
[Termes IGN] segmentation d'image
[Termes IGN] surface cultivée
[Termes IGN] surveillance agricole
[Termes IGN] texture d'image
[Termes IGN] variogrammeRésumé : (auteur) In this study, an object-based image analysis (OBIA) approach was developed to classify field crops using multi-temporal SPOT-5 images with a random forest (RF) classifier. A wide range of features, including the spectral reflectance, vegetation indices (VIs), textural features based on the grey-level co-occurrence matrix (GLCM) and textural features based on geostatistical semivariogram (GST) were extracted for classification, and their performance was evaluated with the RF variable importance measures. Results showed that the best segmentation quality was achieved using the SPOT image acquired in September, with a scale parameter of 40. The spectral reflectance and the GST had a stronger contribution to crop classification than the VIs and GLCM textures. A subset of 60 features was selected using the RF-based feature selection (FS) method, and in this subset, the near-infrared reflectance and the image acquired in August (jointing and heading stages) were found to be the best for crop classification. Numéro de notice : A2019-049 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2017.1333533 Date de publication en ligne : 23/06/2017 En ligne : https://doi.org/10.1080/10106049.2017.1333533 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92063
in Geocarto international > vol 33 n° 10 (October 2018) . - pp 1017 - 1035[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 059-2018041 RAB Revue Centre de documentation En réserve L003 Disponible The soil moisture active passive validation experiment 2012 (SMAPVEX12): Prelaunch calibration and validation of the SMAP Soil moisture algorithms / Heather McNairn in IEEE Transactions on geoscience and remote sensing, vol 53 n° 5 (mai 2015)
[article]
Titre : The soil moisture active passive validation experiment 2012 (SMAPVEX12): Prelaunch calibration and validation of the SMAP Soil moisture algorithms Type de document : Article/Communication Auteurs : Heather McNairn, Auteur ; Thomas J. Jackson, Auteur ; Grant Wiseman, Auteur ; et al., Auteur Année de publication : 2015 Article en page(s) : pp 2784 - 2801 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Acquisition d'image(s) et de donnée(s)
[Termes IGN] analyse de données
[Termes IGN] bande L
[Termes IGN] étalonnage
[Termes IGN] étalonnage de capteur (imagerie)
[Termes IGN] humidité du sol
[Termes IGN] image aérienne
[Termes IGN] image radar
[Termes IGN] Soil Moisture Active Passive
[Termes IGN] télédétection en hyperfréquence
[Termes IGN] test de performanceRésumé : (auteur) The National Aeronautics and Space Administration (NASA) Soil Moisture Active Passive (SMAP) satellite is scheduled for launch in January 2015. In order to develop robust soil moisture retrieval algorithms that fully exploit the unique capabilities of SMAP, algorithm developers had identified a need for long-duration combined active and passive L-band microwave observations. In response to this need, a joint Canada-U.S. field experiment (SMAPVEX12) was conducted in Manitoba (Canada) over a six-week period in 2012. Several times per week, NASA flew two aircraft carrying instruments that could simulate the observations the SMAP satellite would provide. Ground crews collected soil moisture data, crop measurements, and biomass samples in support of this campaign. The objective of SMAPVEX12 was to support the development, enhancement, and testing of SMAP soil moisture retrieval algorithms. This paper details the airborne and field data collection as well as data calibration and analysis. Early results from the SMAP active radar retrieval methods are presented and demonstrate that relative and absolute soil moisture can be delivered by this approach. Passive active L-band sensor (PALS) antenna temperatures and reflectivity, as well as backscatter, closely follow dry down and wetting events observed during SMAPVEX12. The SMAPVEX12 experiment was highly successful in achieving its objectives and provides a unique and valuable data set that will advance algorithm development. Numéro de notice : A2015-631 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2014.2364913 En ligne : https://doi.org/10.1109/TGRS.2014.2364913 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=78119
in IEEE Transactions on geoscience and remote sensing > vol 53 n° 5 (mai 2015) . - pp 2784 - 2801[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-2015051 RAB Revue Centre de documentation En réserve L003 Disponible