Détail de l'auteur
Auteur Ming Cong |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Unsupervised self-adaptive deep learning classification network based on the optic nerve microsaccade mechanism for unmanned aerial vehicle remote sensing image classification / Ming Cong in Geocarto international, vol 36 n° 18 ([01/10/2021])
[article]
Titre : Unsupervised self-adaptive deep learning classification network based on the optic nerve microsaccade mechanism for unmanned aerial vehicle remote sensing image classification Type de document : Article/Communication Auteurs : Ming Cong, Auteur ; Zhiye Wang, Auteur ; Yiting Tao, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 2065 - 2084 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse de groupement
[Termes IGN] chromatopsie
[Termes IGN] classification non dirigée
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] compréhension de l'image
[Termes IGN] échantillonnage d'image
[Termes IGN] filtrage numérique d'image
[Termes IGN] image captée par drone
[Termes IGN] vision
[Termes IGN] vision par ordinateurRésumé : (auteur) Unmanned aerial vehicle remote sensing images need to be precisely and efficiently classified. However, complex ground scenes produced by ultra-high ground resolution, data uniqueness caused by multi-perspective observations, and need for manual labelling make it difficult for current popular deep learning networks to obtain reliable references from heterogeneous samples. To address these problems, this paper proposes an optic nerve microsaccade (ONMS) classification network, developed based on multiple dilated convolution. ONMS first applies a Laplacian of Gaussian filter to find typical features of ground objects and establishes class labels using adaptive clustering. Then, using an image pyramid, multi-scale image data are mapped to the class labels adaptively to generate homologous reliable samples. Finally, an end-to-end multi-scale neural network is applied for classification. Experimental results show that ONMS significantly reduces sample labelling costs while retaining high cognitive performance, classification accuracy, and noise resistance—indicating that it has significant application advantages. Numéro de notice : A2021-707 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/10106049.2019.1687593 Date de publication en ligne : 07/11/2019 En ligne : https://doi.org/10.1080/10106049.2019.1687593 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98602
in Geocarto international > vol 36 n° 18 [01/10/2021] . - pp 2065 - 2084[article]Unsupervised segmentation of high-resolution remote sensing images based on classical models of the visual receptive field / Miaozhong Xu in Geocarto international, vol 30 n° 9 - 10 (October - November 2015)
[article]
Titre : Unsupervised segmentation of high-resolution remote sensing images based on classical models of the visual receptive field Type de document : Article/Communication Auteurs : Miaozhong Xu, Auteur ; Ming Cong, Auteur ; Tianpeng Xie, Auteur Année de publication : 2015 Article en page(s) : pp 997 - 1015 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] champ aléatoire de Markov
[Termes IGN] filtre de Gabor
[Termes IGN] segmentation d'image
[Termes IGN] transformation en ondelettesRésumé : (Auteur) Here, we describe an unsupervised segmentation method incorporating log-Gabor (LG) filters and a Markov random field (MRF) model for high-resolution (HR) remote sensing (RS) images, based on classical models of the visual receptive field. LG filters were utilised to model the receptive fields of the simple cells in the primary visual cortex and extract detailed features from HR–RS images followed by construction of image pyramid through wavelet decomposition to simulate the hierarchical structure of the visual sensing system. Finally, based on the original HR–RS images, their detailed features and the image pyramid, the MRF image segmentation model was applied to obtain the final segmentation result. Real HR–RS images were used as experimental data to validate the proposed method, both qualitatively (visually) and numerically (with the overall accuracy and Kappa index).The experimental results indicate that the proposed method is effective, feasible and robust to noise. Numéro de notice : A2015-627 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2015.1006529 Date de publication en ligne : 26/02/2015 En ligne : http://www.tandfonline.com/doi/full/10.1080/10106049.2015.1006529 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=78110
in Geocarto international > vol 30 n° 9 - 10 (October - November 2015) . - pp 997 - 1015[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 059-2015051 RAB Revue Centre de documentation En réserve L003 Disponible