Détail de l'auteur
Auteur Muhammad Imran |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Geo-spatially modelling dengue epidemics in urban cities: a case study of Lahore, Pakistan / Muhammad Imran in Geocarto international, vol 36 n° 2 ([01/02/2021])
[article]
Titre : Geo-spatially modelling dengue epidemics in urban cities: a case study of Lahore, Pakistan Type de document : Article/Communication Auteurs : Muhammad Imran, Auteur ; Yasra Hamid, Auteur ; Abeer Mazher, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 197 - 211 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] cartographie des risques
[Termes IGN] diptère
[Termes IGN] image Landsat
[Termes IGN] maladie tropicale
[Termes IGN] modélisation spatiale
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] Pakistan
[Termes IGN] régression géographiquement pondérée
[Termes IGN] régression logistique
[Termes IGN] risque sanitaire
[Termes IGN] série temporelle
[Termes IGN] zone intertropicale
[Termes IGN] zone urbaineRésumé : (auteur) The study objective is to predict the epidemiological impact of dengue fever arbovirosis in urban tropical areas of Pakistan. To do so, we used the GPS-based data of the Aedes larvae collected during 2014–2015 in Lahore. We developed a Geographically Weighted Logistic Regression (GWLR) model for Geospatially predicting larvae presence or absence in Lahore. Data on rainfall, temperature are included along with time series of the normalized difference vegetation index (NDVI) derived from Landsat imagery. We observed a high spatial variability of the GWLR parameter estimates of these variables in the study area. The GWLR model significantly (R2a = 0.78) explained the presence or absence of Aedes larvae with temperature, rainfall and NDVI variables in South and Southeast of the study area. In the North and North-West, however, GWLR relationships were observed weak in highly populated areas. Interpolating GWLR coefficients generate more accurate maps of Aedes larvae presence or absence. Numéro de notice : A2021-474 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1614100 Date de publication en ligne : 10/06/2020 En ligne : https://doi.org/10.1080/10106049.2019.1614100 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96932
in Geocarto international > vol 36 n° 2 [01/02/2021] . - pp 197 - 211[article]Using geographically weighted regression kriging for crop yield mapping in West Africa / Muhammad Imran in International journal of geographical information science IJGIS, vol 29 n° 2 (February 2015)
[article]
Titre : Using geographically weighted regression kriging for crop yield mapping in West Africa Type de document : Article/Communication Auteurs : Muhammad Imran, Auteur ; Alfred Stein, Auteur ; Raul Zurita-Milla, Auteur Année de publication : 2015 Article en page(s) : pp 234 - 257 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications SIG
[Termes IGN] agriculture
[Termes IGN] analyse de données
[Termes IGN] Burkina Faso
[Termes IGN] carte agricole
[Termes IGN] cartographie statistique
[Termes IGN] image SPOT-Végétation
[Termes IGN] krigeage
[Termes IGN] régression géographiquement pondérée
[Termes IGN] rendement agricole
[Termes IGN] sorgho (céréale)Résumé : (Auteur) Geographical information systems support the application of statistical techniques to map spatially referenced crop data. To do this in the optimal way, errors and uncertainties have to be minimized that are often associated with operations on the data. This paper applies a spatial statistical approach to upscale crop yields from the field level toward the scale of Burkina Faso. Observed yields were related to the Normalized Difference Vegetation Index derived from SPOT-VEGETATION. The objective was to quantify the uncertainties at the subsequent steps. First, we applied a point pattern analysis to examine uncertainties due to the sampling network of field surveys in the country. Second, geographically weighted regression kriging (GWRK) was applied to upscale the yield observations and to quantify the corresponding uncertainty. The proposed method was demonstrated with the mapping of sorghum yields in Burkina Faso and results were compared with those from regression kriging (RK) and kriging with external drift using a local kriging neighborhood (KEDLN). The proposed method was validated with independent yield observations obtained from field surveys. We observed that the lower uncertainty range value increased by 39%, and the upper uncertainty range value decreased by 51%, when comparing GWRK with RK and KEDLN. Moreover, GWRK reduced the prediction error variance as compared to RK (20 vs. 31) and to KEDLN (20 vs. 39). We found that climate and topography had a major impact on the country’s sorghum yields. Further, the financial ability of farmers influenced the crop management and, thus, the sorghum crop yields. We concluded that GWRK effectively utilized information present in the covariate datasets and improved the accuracies of both the regional-scale mapping of sorghum yields and was able to quantify the associated uncertainty. Numéro de notice : A2015-578 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2014.959522 En ligne : http://www.tandfonline.com/doi/full/10.1080/13658816.2014.959522 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=77840
in International journal of geographical information science IJGIS > vol 29 n° 2 (February 2015) . - pp 234 - 257[article]