Détail de l'auteur
Auteur Ren-Yu Li |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Geo-located community detection in Twitter with enhanced fast-greedy optimization of modularity: the case study of typhoon Haiyan / Mohamed Bakillah in International journal of geographical information science IJGIS, vol 29 n° 2 (February 2015)
[article]
Titre : Geo-located community detection in Twitter with enhanced fast-greedy optimization of modularity: the case study of typhoon Haiyan Type de document : Article/Communication Auteurs : Mohamed Bakillah, Auteur ; Ren-Yu Li, Auteur ; Steve H.L. Liang, Auteur Année de publication : 2015 Article en page(s) : pp 258 - 279 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] communauté virtuelle
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] exploration de données géographiques
[Termes IGN] géopositionnement
[Termes IGN] risque naturel
[Termes IGN] TwitterRésumé : (Auteur) As they increase in popularity, social media are regarded as important sources of information on geographical phenomena. Studies have also shown that people rely on social media to communicate during disasters and emergency situation, and that the exchanged messages can be used to get an insight into the situation. Spatial data mining techniques are one way to extract relevant information from social media. In this article, our aim is to contribute to this field by investigating how graph clustering can be applied to support the detection of geo-located communities in Twitter in disaster situations. For this purpose, we have enhanced the fast-greedy optimization of modularity (FGM) clustering algorithm with semantic similarity so that it can deal with the complex social graphs extracted from Twitter. Then, we have coupled the enhanced FGM with the varied density-based spatial clustering of applications with noise spatial clustering algorithm to obtain spatial clusters at different temporal snapshots. The method was experimented with a case study on typhoon Haiyan in the Philippines, and Twitter’s different interaction modes were compared to create the graph of users and to detect communities. The experiments show that communities that are relevant to identify areas where disaster-related incidents were reported can be extracted, and that the enhanced algorithm outperforms the generic one in this task. Numéro de notice : A2015-579 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2014.964247 En ligne : http://www.tandfonline.com/doi/full/10.1080/13658816.2014.964247 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=77841
in International journal of geographical information science IJGIS > vol 29 n° 2 (February 2015) . - pp 258 - 279[article]