Détail de l'auteur
Auteur Daniela Ali-Sisto |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Tropical forest canopy cover estimation using satellite imagery and airborne lidar reference data / Lauri Korhonen in Silva fennica, vol 49 n° 5 ([01/10/2015])
[article]
Titre : Tropical forest canopy cover estimation using satellite imagery and airborne lidar reference data Type de document : Article/Communication Auteurs : Lauri Korhonen, Auteur ; Daniela Ali-Sisto, Auteur ; Timo Tokola, Auteur Année de publication : 2015 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] canopée
[Termes IGN] couvert forestier
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] forêt tropicale
[Termes IGN] image ALOS-AVNIR2
[Termes IGN] image optique
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] Laos
[Termes IGN] placette d'échantillonnage
[Termes IGN] régression logistique
[Vedettes matières IGN] Inventaire forestierRésumé : (auteur) The fusion of optical satellite imagery, strips of lidar data and field plots is a promising approach for the inventory of tropical forests. Airborne lidars also enable an accurate direct estimation of the forest canopy cover (CC), and thus a sample of lidar strips can be used as reference data for creating CC maps which are based on satellite images. In this study, our objective was to validate CC maps obtained from an ALOS AVNIR-2 satellite image wall-to-wall, against a lidar-based CC map of a tropical forest area located in Laos. The reference CC values which were needed for model training were obtained from a sample of four lidar strips. Zero-and-one inflated beta regression (ZOINBR) models were applied to link the spectral vegetation indices derived from the ALOS image with the lidar-based CC estimates. In addition, we compared ZOINBR and logistic regression models in the forest area estimation by using >20% CC as a forest definition. Using a total of 409 217 30 × 30 m population units as validation, our model showed a strong correlation between lidar-based CC and spectral satellite features (root mean square error = 12.8%, R2 = 0.82). In the forest area estimation, a direct classification using logistic regression provided better accuracy than the estimation of CC values as an intermediate step (kappa = 0.61 vs. 0.53). It is important to obtain sufficient training data from both ends of the CC range. The forest area estimation should be done before the CC estimation, rather than vice versa. Numéro de notice : A2015-673 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article DOI : 10.14214/sf.1405 En ligne : http://www.silvafennica.fi/article/1405 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=78293
in Silva fennica > vol 49 n° 5 [01/10/2015][article]