Détail de l'auteur
Auteur Yingjie Hu |
Documents disponibles écrits par cet auteur (4)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Enriching the metadata of map images: a deep learning approach with GIS-based data augmentation / Yingjie Hu in International journal of geographical information science IJGIS, vol 36 n° 4 (April 2022)
[article]
Titre : Enriching the metadata of map images: a deep learning approach with GIS-based data augmentation Type de document : Article/Communication Auteurs : Yingjie Hu, Auteur ; Zhipeng Gui, Auteur ; Jimin Wang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 799 - 821 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] descripteur
[Termes IGN] données d'entrainement sans étiquette
[Termes IGN] image cartographique
[Termes IGN] métadonnées
[Termes IGN] projection
[Termes IGN] système d'information géographique
[Termes IGN] Web Map Service
[Termes IGN] web mappingRésumé : (auteur) Maps in the form of digital images are widely available in geoportals, Web pages, and other data sources. The metadata of map images, such as spatial extents and place names, are critical for their indexing and searching. However, many map images have either mismatched metadata or no metadata at all. Recent developments in deep learning offer new possibilities for enriching the metadata of map images via image-based information extraction. One major challenge of using deep learning models is that they often require large amounts of training data that have to be manually labeled. To address this challenge, this paper presents a deep learning approach with GIS-based data augmentation that can automatically generate labeled training map images from shapefiles using GIS operations. We utilize such an approach to enrich the metadata of map images by adding spatial extents and place names extracted from map images. We evaluate this GIS-based data augmentation approach by using it to train multiple deep learning models and testing them on two different datasets: a Web Map Service image dataset at the continental scale and an online map image dataset at the state scale. We then discuss the advantages and limitations of the proposed approach. Numéro de notice : A2022-258 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : https://doi.org/10.1080/13658816.2021.1968407 En ligne : https://doi.org/10.1080/13658816.2021.1968407 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100231
in International journal of geographical information science IJGIS > vol 36 n° 4 (April 2022) . - pp 799 - 821[article]NeuroTPR: A neuro‐net toponym recognition model for extracting locations from social media messages / Jimin Wang in Transactions in GIS, Vol 24 n° 3 (June 2020)
[article]
Titre : NeuroTPR: A neuro‐net toponym recognition model for extracting locations from social media messages Type de document : Article/Communication Auteurs : Jimin Wang, Auteur ; Yingjie Hu, Auteur ; Kenneth Joseph, Auteur Année de publication : 2020 Article en page(s) : pp 719 - 735 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] catastrophe naturelle
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] données localisées des bénévoles
[Termes IGN] flux de travaux
[Termes IGN] géolocalisation
[Termes IGN] précision sémantique
[Termes IGN] reconnaissance de noms
[Termes IGN] réseau neuronal récurrent
[Termes IGN] réseau social
[Termes IGN] toponymeRésumé : (auteur) Social media messages, such as tweets, are frequently used by people during natural disasters to share real‐time information and to report incidents. Within these messages, geographic locations are often described. Accurate recognition and geolocation of these locations are critical for reaching those in need. This article focuses on the first part of this process, namely recognizing locations from social media messages. While general named entity recognition tools are often used to recognize locations, their performance is limited due to the various language irregularities associated with social media text, such as informal sentence structures, inconsistent letter cases, name abbreviations, and misspellings. We present NeuroTPR, which is a Neuro‐net ToPonym Recognition model designed specifically with these linguistic irregularities in mind. Our approach extends a general bidirectional recurrent neural network model with a number of features designed to address the task of location recognition in social media messages. We also propose an automatic workflow for generating annotated data sets from Wikipedia articles for training toponym recognition models. We demonstrate NeuroTPR by applying it to three test data sets, including a Twitter data set from Hurricane Harvey, and comparing its performance with those of six baseline models. Numéro de notice : A2020-445 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/tgis.12627 Date de publication en ligne : 14/05/2020 En ligne : https://doi.org/10.1111/tgis.12627 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95508
in Transactions in GIS > Vol 24 n° 3 (June 2020) . - pp 719 - 735[article]A natural language processing and geospatial clustering framework for harvesting local place names from geotagged housing advertisements / Yingjie Hu in International journal of geographical information science IJGIS, Vol 33 n° 3-4 (March - April 2019)
[article]
Titre : A natural language processing and geospatial clustering framework for harvesting local place names from geotagged housing advertisements Type de document : Article/Communication Auteurs : Yingjie Hu, Auteur ; Huina Mao, Auteur ; Grant McKenzie, Auteur Année de publication : 2019 Article en page(s) : pp 714 - 738 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Toponymie
[Termes IGN] analyse de groupement
[Termes IGN] information sémantique
[Termes IGN] publicité
[Termes IGN] recherche d'information géographique
[Termes IGN] reconnaissance de noms
[Termes IGN] répertoire toponymique
[Termes IGN] toponymie locale
[Termes IGN] traitement du langage naturelRésumé : (Auteur) Local place names are frequently used by residents living in a geographic region. Such place names may not be recorded in existing gazetteers, due to their vernacular nature, relative insignificance to a gazetteer covering a large area (e.g. the entire world), recent establishment (e.g. the name of a newly-opened shopping center) or other reasons. While not always recorded, local place names play important roles in many applications, from supporting public participation in urban planning to locating victims in disaster response. In this paper, we propose a computational framework for harvesting local place names from geotagged housing advertisements. We make use of those advertisements posted on local-oriented websites, such as Craigslist, where local place names are often mentioned. The proposed framework consists of two stages: natural language processing (NLP) and geospatial clustering. The NLP stage examines the textual content of housing advertisements and extracts place name candidates. The geospatial stage focuses on the coordinates associated with the extracted place name candidates and performs multiscale geospatial clustering to filter out the non-place names. We evaluate our framework by comparing its performance with those of six baselines. We also compare our result with four existing gazetteers to demonstrate the not-yet-recorded local place names discovered by our framework. Numéro de notice : A2019-213 Affiliation des auteurs : non IGN Thématique : TOPONYMIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2018.1458986 Date de publication en ligne : 13/04/2018 En ligne : https://doi.org/10.1080/13658816.2018.1458986 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92685
in International journal of geographical information science IJGIS > Vol 33 n° 3-4 (March - April 2019) . - pp 714 - 738[article]Exemplaires(2)
Code-barres Cote Support Localisation Section Disponibilité 079-2019031 RAB Revue Centre de documentation En réserve L003 Disponible 079-2019032 RAB Revue Centre de documentation En réserve L003 Disponible Metadata topic harmonization and semantic search for linked-data-driven geoportals: A case study using ArcGIS online / Yingjie Hu in Transactions in GIS, vol 19 n° 3 (June 2015)
[article]
Titre : Metadata topic harmonization and semantic search for linked-data-driven geoportals: A case study using ArcGIS online Type de document : Article/Communication Auteurs : Yingjie Hu, Auteur ; Krzysztof Janowicz, Auteur ; Sathya Prasad, Auteur ; Song Gao, Auteur Année de publication : 2015 Article en page(s) : pp 398 - 416 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] ArcGIS
[Termes IGN] diffusion de données
[Termes IGN] géoportail
[Termes IGN] langage naturel (informatique)
[Termes IGN] métadonnées géographiques
[Termes IGN] partage de données localisées
[Termes IGN] traitement du langage naturel
[Termes IGN] web sémantiqueRésumé : (auteur) Geoportals provide integrated access to geospatial resources, and enable both authorities and the general public to contribute and share data and services. An essential goal of geoportals is to facilitate the discovery of the available resources. Such a process relies heavily on the quality of metadata. While multiple metadata standards have been established, data contributers may adopt different standards when sharing their data via the same geoportal. This is especially the case for user-generated content where various terms and topics can be introduced to describe similar datasets. While this heterogeneity provides a wealth of perspectives, it also complicates resource discovery. With the fast development of the Semantic Web technologies, there is a rise of Linked-Data-driven portals. Although these novel portals open up new ways to organize metadata and retrieve resources, they lack effective semantic search methods. This article addresses the two challenges discussed above, namely the topic heterogeneity brought by multiple metadata standards and the lack of established semantic search in Linked-Data-driven geoportals. To harmonize the metadata topics, we employ a natural language processing method, namely Labeled Latent Dirichlet Allocation (LLDA), and train it using standardized metadata from Data.gov. With respect to semantic search, we construct thematic and geographic matching features from the textual metadata descriptions, and train a regression model via a human participants experiment. We evaluate our methods by examining their performances in addressing the two issues. Finally, we implement a semantics-enabled and Linked-Data-driven prototypical geoportal using a sample dataset from Esri's ArcGIS Online. Numéro de notice : A2015-679 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/tgis.12151 En ligne : http://dx.doi.org/10.1111/tgis.12151 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=78307
in Transactions in GIS > vol 19 n° 3 (June 2015) . - pp 398 - 416[article]