Détail de l'auteur
Auteur Min Deng |
Documents disponibles écrits par cet auteur (9)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Mining crowdsourced trajectory and geo-tagged data for spatial-semantic road map construction / Jincai Huang in Transactions in GIS, vol 26 n° 2 (April 2022)
[article]
Titre : Mining crowdsourced trajectory and geo-tagged data for spatial-semantic road map construction Type de document : Article/Communication Auteurs : Jincai Huang, Auteur ; Yunfei Zhang, Auteur ; Min Deng, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 735 - 754 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Bases de données localisées
[Vedettes matières IGN] Géomatique
[Termes IGN] base de données routières
[Termes IGN] carrefour
[Termes IGN] carte routière
[Termes IGN] contenu généré par les utilisateurs
[Termes IGN] données localisées des bénévoles
[Termes IGN] données routières
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] information sémantique
[Termes IGN] intégration de données
[Termes IGN] navigation automobile
[Termes IGN] vitesse
[Termes IGN] Wuhan (Chine)Résumé : (auteur) The road map is a fundamental part of a spatial data infrastructure (SDI), and is widely applied in navigation, smart transportation, and mobile location services. Recently, with the ubiquity of positioning devices, crowdsourced trajectories have become a significant data resource for road map construction and updating. However, existing trajectory-based methods mainly place emphasis on extracting road geometry features and may ignore continuous updating of road semantic information. Hence, we propose a divide-and-conquer method to construct a spatial-semantic road map by incorporating multiple data sources (e.g., crowdsourced trajectories and geo-tagged data). The proposed method divides road map construction into two sub-tasks, road structure reconstruction and road attributes inference. The road structure reconstruction process starts to partition raw trajectory data into different cliques of roadways and road intersections, and then extracts various targeted road structures by analyzing the turning modes in different trajectory cliques. The road attributes inference process aims to infer three pieces of crucial semantic information about road speeds, turning rules, and road names from crowdsourced trajectories and geo-tagged data. The case studies in Wuhan were examined to illustrate that the proposed method can construct a routable road map with enhanced geometric structures and rich semantic information, providing a beneficial data solution for car navigation and SDI update. Numéro de notice : A2022-364 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1111/tgis.12879 Date de publication en ligne : 17/12/2021 En ligne : https://doi.org/10.1111/tgis.12879 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100583
in Transactions in GIS > vol 26 n° 2 (April 2022) . - pp 735 - 754[article]SNN_flow: a shared nearest-neighbor-based clustering method for inhomogeneous origin-destination flows / Qiliang Liu in International journal of geographical information science IJGIS, vol 36 n° 2 (February 2022)
[article]
Titre : SNN_flow: a shared nearest-neighbor-based clustering method for inhomogeneous origin-destination flows Type de document : Article/Communication Auteurs : Qiliang Liu, Auteur ; Jie Yang, Auteur ; Min Deng, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 253 - 279 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse de groupement
[Termes IGN] classification ascendante hiérarchique
[Termes IGN] classification barycentrique
[Termes IGN] flux
[Termes IGN] méthode de Monte-Carlo
[Termes IGN] mobilité urbaine
[Termes IGN] noeud
[Termes IGN] origine - destination
[Termes IGN] Pékin (Chine)
[Termes IGN] réseau routier
[Termes IGN] taxi
[Termes IGN] trajet (mobilité)Résumé : (auteur) Identifying clusters from individual origin–destination (OD) flows is vital for investigating spatial interactions and flow mapping. However, detecting arbitrarily-shaped and non-uniform flow clusters from network-constrained OD flows continues to be a challenge. This study proposes a shared nearest-neighbor-based clustering method (SNN_flow) for inhomogeneous OD flows constrained by a road network. To reveal clusters of varying shapes and densities, a normalized density for each OD flow is defined based on the concept of shared nearest-neighbor, and flow clusters are constructed using the density-connectivity mechanism. To handle large amounts of disaggregated OD flows, an efficient method for searching the network-constrained k-nearest flows is developed based on a local road node distance matrix. The parameters of SNN_flow are statistically determined: the density threshold is modeled as a significance level of a significance test, and the number of nearest neighbors is estimated based on the variance of the kth nearest distance. SNN_flow is compared with three state-of-the-art methods using taxicab trip data in Beijing. The results show that SNN_flow outperforms existing methods in identifying flow clusters with irregular shapes and inhomogeneous distributions. The clusters identified by SNN_flow can reveal human mobility patterns in Beijing. Numéro de notice : A2022-163 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2021.1899184 Date de publication en ligne : 16/03/2021 En ligne : https://doi.org/10.1080/13658816.2021.1899184 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99786
in International journal of geographical information science IJGIS > vol 36 n° 2 (February 2022) . - pp 253 - 279[article]Network-constrained bivariate clustering method for detecting urban black holes and volcanoes / Qiliang Liu in International journal of geographical information science IJGIS, vol 34 n° 10 (October 2020)
[article]
Titre : Network-constrained bivariate clustering method for detecting urban black holes and volcanoes Type de document : Article/Communication Auteurs : Qiliang Liu, Auteur ; Zhihui Wu, Auteur ; Min Deng, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 1903 - 1929 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse bivariée
[Termes IGN] analyse de groupement
[Termes IGN] analyse spatio-temporelle
[Termes IGN] contour
[Termes IGN] détection d'anomalie
[Termes IGN] méthode de Monte-Carlo
[Termes IGN] Pékin (Chine)
[Termes IGN] planification urbaine
[Termes IGN] protection civile
[Termes IGN] réseau de contraintes
[Termes IGN] réseau routier
[Termes IGN] trafic routier
[Termes IGN] trafic urbain
[Termes IGN] trajectoire (véhicule non spatial)
[Termes IGN] voisinage (relation topologique)
[Termes IGN] zone urbaineRésumé : (auteur) Urban black holes and volcanoes are typical traffic anomalies that are useful for optimizing urban planning and maintaining public safety. It is still challenging to detect arbitrarily shaped urban black holes and volcanoes considering the network constraints with less prior knowledge. This study models urban black holes and volcanoes as bivariate spatial clusters and develops a network-constrained bivariate clustering method for detecting statistically significant urban black holes and volcanoes with irregular shapes. First, an edge-expansion strategy is proposed to construct the network-constrained neighborhoods without the time-consuming calculation of the network distance between each pair of objects. Then, a network-constrained spatial scan statistic is constructed to detect urban black holes and volcanoes, and a multidirectional optimization method is developed to identify arbitrarily shaped urban black holes and volcanoes. Finally, the statistical significance of multiscale urban black holes and volcanoes is evaluated using Monte Carlo simulation. The proposed method is compared with three state-of-the-art methods using both simulated data and Beijing taxicab spatial trajectory data. The comparison shows that the proposed method can detect urban black holes and volcanoes more accurately and completely and is useful for detecting spatiotemporal variations of traffic anomalies. Numéro de notice : A2020-511 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/URBANISME Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1720027 Date de publication en ligne : 27/02/2020 En ligne : https://doi.org/10.1080/13658816.2020.1720027 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95665
in International journal of geographical information science IJGIS > vol 34 n° 10 (October 2020) . - pp 1903 - 1929[article]Recognizing linear building patterns in topographic data by using two new indices based on Delaunay triangulation / Xianjin He in ISPRS International journal of geo-information, vol 9 n° 4 (April 2020)
[article]
Titre : Recognizing linear building patterns in topographic data by using two new indices based on Delaunay triangulation Type de document : Article/Communication Auteurs : Xianjin He, Auteur ; Min Deng, Auteur Année de publication : 2020 Article en page(s) : 14 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] adjacence
[Termes IGN] direction
[Termes IGN] discontinuité
[Termes IGN] données topographiques
[Termes IGN] modèle linéaire
[Termes IGN] modèle numérique du bâti
[Termes IGN] reconnaissance de formes
[Termes IGN] segmentation
[Termes IGN] triangulation de Delaunay
[Termes IGN] voisinage (relation topologique)Résumé : (auteur) Building pattern recognition is fundamental to a wide range of downstream applications, such as urban landscape evaluation, social analyses, and map generalization. Although many studies have been conducted, there is still a lack of satisfactory results, due to the imprecision of the relative direction model of any two adjacent buildings and the ineffective extraction methods. This study aims to provide an alternative for quantifying the direction and the spatial continuity of any two buildings on the basis of the Delaunay triangulation for the recognition of linear building patterns. First, constrained Delaunay triangulations (CDTs) are created for all buildings within each block and every two adjacent buildings. Then, the spatial continuity index (SCI), the direction index (DI), and other spatial relations (e.g., distance) of every two adjacent buildings are derived using the CDT. Finally, the building block is modelled as a graph based on derived matrices, and a graph segmentation approach is proposed to extract linear building patterns. In the segmentation process, the edges of the graph are removed first, according to the global thresholds of the SCI and distance, and are subsequently subdivided into subgraphs on direction rules. The proposed method is tested using three datasets. The experimental results suggest that the proposed method can recognize both collinear and curvilinear building patterns, given that the correctness values are all above 92% for the three study areas. The results also demonstrate that the novel SCI can effectively filter many insignificant neighbor relationships in the graph segmentation process. It is noteworthy that the proposed DI is capable of measuring building relative directions accurately and works efficiently in linear building pattern extraction. Numéro de notice : A2020-267 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi9040231 Date de publication en ligne : 09/04/2020 En ligne : https://doi.org/10.3390/ijgi9040231 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95031
in ISPRS International journal of geo-information > vol 9 n° 4 (April 2020) . - 14 p.[article]Recognizing building groups for generalization : a comparative study / Min Deng in Cartography and Geographic Information Science, Vol 45 n° 3 (May 2018)
[article]
Titre : Recognizing building groups for generalization : a comparative study Type de document : Article/Communication Auteurs : Min Deng, Auteur ; Jianbo Tang, Auteur ; Qiliang Liu, Auteur ; Fang Wu, Auteur Année de publication : 2018 Article en page(s) : pp 187 - 204 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] algorithme de généralisation
[Termes IGN] analyse comparative
[Termes IGN] Chine
[Termes IGN] contrainte géométrique
[Termes IGN] généralisation cartographique automatisée
[Termes IGN] généralisation du bâti
[Vedettes matières IGN] GénéralisationRésumé : (Auteur) Recognition of building groups is a critical step in building generalization. To find building groups, various approaches have been developed based on the principles of grouping (or the Gestalt laws of grouping), and the effectiveness of these approaches needs to be evaluated. This study presents a comparative analysis of nine typical such approaches, including three approaches that only consider proximity principle and six approaches that consider multiple grouping principles. Real-life dataset at 1:5000, 1:10,000, and 1:50,000 scales provided by National Geomatics Center of China is used to evaluate the performance of these approaches. Buildings at smaller scales are used to construct the benchmarks to test the grouping results at larger scales, and the adjusted Rand index is adopted to indicate the accuracy of the detected groups. Significant tests (Friedman test and Wilcoxon signed-rank test) are also performed to provide both the overall and pairwise comparisons of these approaches. The results show that (1) the average accuracy of most existing approaches is between 0.3 and 0.5, and the performances of these approaches are significantly different; (2) when only proximity is considered, the buffer analysis approach performs significantly better than other approaches; (3) when multiple grouping principles are considered, the local constraint-based approach usually performs better than other approaches; (4) existing approaches that consider similarity and/or continuity seldom improve the performance of building grouping. Numéro de notice : A2018-129 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/15230406.2017.1302821 Date de publication en ligne : 24/03/2017 En ligne : https://doi.org/10.1080/15230406.2017.1302821 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89657
in Cartography and Geographic Information Science > Vol 45 n° 3 (May 2018) . - pp 187 - 204[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 032-2018031 RAB Revue Centre de documentation En réserve L003 Disponible A spatial anomaly points and regions detection method using multi-constrained graphs and local density / Yan Shi in Transactions in GIS, vol 21 n° 2 (April 2017)PermalinkModeling spatiotemporal topological relationships between moving object trajectories along road networks based on region connection calculus / Linbing Ma in Cartography and Geographic Information Science, Vol 43 n° 4 (September 2016)PermalinkMorphing linear features based on their entire structures / Min Deng in Transactions in GIS, vol 19 n° 5 (October 2015)PermalinkMulti-level topological relations between spatial regions based upon topological invariants / Min Deng in Geoinformatica, vol 11 n° 2 (June - August 2007)Permalink