Détail de l'auteur
Auteur Shihong Du |
Documents disponibles écrits par cet auteur (9)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Mapping annual urban evolution process (2001–2018) at 250 m: A normalized multi-objective deep learning regression / Haoyu Wang in Remote sensing of environment, vol 278 (September 2022)
[article]
Titre : Mapping annual urban evolution process (2001–2018) at 250 m: A normalized multi-objective deep learning regression Type de document : Article/Communication Auteurs : Haoyu Wang, Auteur ; Xiuyuan Zhang, Auteur ; Shihong Du, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 113088 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse des mélanges spectraux
[Termes IGN] apprentissage profond
[Termes IGN] carte d'occupation du sol
[Termes IGN] cartographie thématique
[Termes IGN] Chine
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] croissance urbaine
[Termes IGN] image Terra-MODIS
[Termes IGN] modèle de régression
[Termes IGN] série temporelle
[Termes IGN] surface cultivéeRésumé : (auteur) Global urbanization changes land cover patterns and affects the living environment of humans. However, urbanization and its evolution process, i.e., conversions among diverse land covers, are hard to measure, as existing land cover maps usually have low temporal resolutions; conversely, long-term and temporally dense land cover maps, such as vegetation-impervious-soil decomposition maps base on MODIS, ignore the important land cover of cropland in urban evolution process (UEP). To resolve the issue, this study suggests a novel model named time-extended non-crop vegetation-impervious-cropland (Time V-I-C) to represent and quantify different stages of UEP; then, a normalized multi-objective T-ConvLSTM (NMT) method is proposed to unmix cropland, non-crop vegetation, and impervious based on the intra-annual remotely-sensed time series, and obtain their fractions in each pixel for generating UEP maps. Consequently, UEP maps from 2001 to 2018 are generated for two Chinese urban agglomerations, i.e., Beijing-Tianjin-Hebei and Yangtze River Delta urban agglomerations. The mapping results have high accuracies with a small standard error of regression (SER) of 13.1%, small root mean square error (RMSE) of 12.6%, and small mean absolute error (MAE) of 8.4%, and the maps reveal the different UEP in the two urban agglomerations. Therefore, this study provides a new idea for expressing UEP and contributes to a wide range of urbanization studies and sustainable city development. Numéro de notice : A2022-511 Affiliation des auteurs : non IGN Thématique : IMAGERIE/URBANISME Nature : Article DOI : 10.1016/j.rse.2022.113088 Date de publication en ligne : 25/05/2022 En ligne : https://doi.org/10.1016/j.rse.2022.113088 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101049
in Remote sensing of environment > vol 278 (September 2022) . - n° 113088[article]Building fuzzy areal geographical objects from point sets / Jifa Guo in Transactions in GIS, vol 25 n° 6 (December 2021)
[article]
Titre : Building fuzzy areal geographical objects from point sets Type de document : Article/Communication Auteurs : Jifa Guo, Auteur ; Shihong Du, Auteur Année de publication : 2021 Article en page(s) : pp 3067 - 3087 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse comparative
[Termes IGN] habitat animal
[Termes IGN] habitat d'espèce
[Termes IGN] objet flou
[Termes IGN] objet géographique zonal
[Termes IGN] réserve naturelleRésumé : (Auteur) Representations of fuzzy geographic objects and analyses of their spatial relationships have received considerable attention in the GIS and spatial database domains over the past 30 years. However, building fuzzy geographical objects from real data is still a challenge. Simple fuzzy areal object models are too restrictive for many applications, and general fuzzy areal models may not be restrictive enough; as a result, the extent of fuzzy regions that satisfy the relevant conditions may be too large to affect the location description and spatial analysis. A condition by which the number of cores is not greater than one is added for the general object model, and an operable method for constructing fuzzy objects from the point set is proposed. Two peak and pass sets are determined for the membership surface by the fuzzy morphometric analysis method. The first set is used to initially divide the footprint of the fuzzy surface into smaller subfootprints, and the second set is used to merge insignificant fuzzy objects with their nearest significant fuzzy objects; thus, unreasonable division is avoided. Cross-validation is adopted to evaluate the generated fuzzy objects. An experiment is provided to verify the effectiveness of the proposed method. Numéro de notice : A2021-933 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/tgis.12808 Date de publication en ligne : 10/10/2021 En ligne : https://doi.org/10.1111/tgis.12808 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99454
in Transactions in GIS > vol 25 n° 6 (December 2021) . - pp 3067 - 3087[article]Heuristic sample learning for complex urban scenes: Application to urban functional-zone mapping with VHR images and POI data / Xiuyuan Zhang in ISPRS Journal of photogrammetry and remote sensing, vol 161 (March 2020)
[article]
Titre : Heuristic sample learning for complex urban scenes: Application to urban functional-zone mapping with VHR images and POI data Type de document : Article/Communication Auteurs : Xiuyuan Zhang, Auteur ; Shihong Du, Auteur ; Zhijia Zheng, Auteur Année de publication : 2020 Article en page(s) : pp 1 - 12 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] analyse d'image orientée objet
[Termes IGN] apprentissage dirigé
[Termes IGN] apprentissage semi-dirigé
[Termes IGN] cartographie urbaine
[Termes IGN] Chine
[Termes IGN] échantillonnage d'image
[Termes IGN] image à très haute résolution
[Termes IGN] méthode heuristique
[Termes IGN] point d'intérêt
[Termes IGN] scène urbaineRésumé : (Auteur) Urban functional zones are basic units of urban planning and resource allocation, and contribute to a wide range of urban studies and investigations. Existing studies on functional-zone mapping with very-high-resolution (VHR) satellite images focused much on feature representations and classification techniques, but ignored zone sampling which however was fundamental to automatic zone classifications. Functional-zone sampling is much complicated and can hardly be resolved by classical sampling methods, as functional zones are complex urban scenes which consist of heterogeneous land covers and have highly abstract categories. To resolve the issue, this study presents a novel sampling paradigm, i.e., heuristic sample learning (HSL). It first proposes a sparse topic model to select representative functional zones, then uses deep forest to select confusing zones, and finally embraces Chinese restaurant process to label these selected zones. The presented method collects both representative and confusing zone samples and identifies their categories accurately, which makes the functional-zone classification process robust and the classification results accurate. Experiments conducted in Beijing indicate that HSL is effective and efficient for functional-zone sampling and classifications. Compared to traditional manual sampling, HSL reduces the time cost by 55% and improves the classification accuracy by 11.3% on average; furthermore, HSL can reduce the variation in sampling and classification results caused by different proficiency of operators. Accordingly, HSL significantly contributes to functional-zone mapping and plays an important role in urban studies. Numéro de notice : A2020-061 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.01.005 Date de publication en ligne : 13/01/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.01.005 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94577
in ISPRS Journal of photogrammetry and remote sensing > vol 161 (March 2020) . - pp 1 - 12[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020031 RAB Revue Centre de documentation En réserve L003 Disponible 081-2020033 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2020032 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Interpreting the fuzzy semantics of natural-language spatial relation terms with the fuzzy random forest algorithm / Xiaonan Wang in ISPRS International journal of geo-information, vol 7 n° 2 (February 2018)
[article]
Titre : Interpreting the fuzzy semantics of natural-language spatial relation terms with the fuzzy random forest algorithm Type de document : Article/Communication Auteurs : Xiaonan Wang, Auteur ; Shihong Du, Auteur ; Chen-Chieh Feng, Auteur ; Xueying Zhang, Auteur ; Xiuyuan Zhang, Auteur Année de publication : 2018 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] langage naturel (informatique)
[Termes IGN] relation sémantique
[Termes IGN] relation topologique
[Termes IGN] toponyme flouRésumé : (Auteur) Naïve Geography, intelligent geographical information systems (GIS), and spatial data mining especially from social media all rely on natural-language spatial relations (NLSR) terms to incorporate commonsense spatial knowledge into conventional GIS and to enhance the semantic interoperability of spatial information in social media data. Yet, the inherent fuzziness of NLSR terms makes them challenging to interpret. This study proposes to interpret the fuzzy semantics of NLSR terms using the fuzzy random forest (FRF) algorithm. Based on a large number of fuzzy samples acquired by transforming a set of crisp samples with the random forest algorithm, two FRF models with different membership assembling strategies are trained to obtain the fuzzy interpretation of three line-region geometric representations using 69 NLSR terms. Experimental results demonstrate that the two FRF models achieve good accuracy in interpreting line-region geometric representations using fuzzy NLSR terms. In addition, fuzzy classification of FRF can interpret the fuzzy semantics of NLSR terms more fully than their crisp counterparts. Numéro de notice : A2018-107 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi7020058 En ligne : https://doi.org/10.3390/ijgi7020058 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89533
in ISPRS International journal of geo-information > vol 7 n° 2 (February 2018)[article]Classifying natural-language spatial relation terms with random forest algorithm / Shihong Du in International journal of geographical information science IJGIS, vol 31 n° 3-4 (March-April 2017)
[article]
Titre : Classifying natural-language spatial relation terms with random forest algorithm Type de document : Article/Communication Auteurs : Shihong Du, Auteur ; Xiaonan Wang, Auteur ; Chen-Chieh Feng, Auteur ; Xiuyuan Zhang, Auteur Année de publication : 2017 Article en page(s) : pp 542 - 568 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] apprentissage dirigé
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] intelligence artificielle
[Termes IGN] interface en langage naturel
[Termes IGN] langage naturel (informatique)
[Termes IGN] méthode robuste
[Termes IGN] recherche d'information géographique
[Termes IGN] relation spatiale
[Termes IGN] relation topologique
[Termes IGN] similitude sémantiqueRésumé : (Auteur) The exponential growth of natural language text data in social media has contributed a rich data source for geographic information. However, incorporating such data source for GIS analysis faces tremendous challenges as existing GIS data tend to be geometry based while natural language text data tend to rely on natural language spatial relation (NLSR) terms. To alleviate this problem, one critical step is to translate geometric configurations into NLSR terms, but existing methods to date (e.g. mean value or decision tree algorithm) are insufficient to obtain a precise translation. This study addresses this issue by adopting the random forest (RF) algorithm to automatically learn a robust mapping model from a large number of samples and to evaluate the importance of each variable for each NLSR term. Because the semantic similarity of the collected terms reduces the classification accuracy, different grouping schemes of NLSR terms are used, with their influences on classification results being evaluated. The experiment results demonstrate that the learned model can accurately transform geometric configurations into NLSR terms, and that recognizing different groups of terms require different sets of variables. More importantly, the results of variable importance evaluation indicate that the importance of topology types determined by the 9-intersection model is weaker than metric variables in defining NLSR terms, which contrasts to the assertion of ‘topology matters, metric refines’ in existing studies. Numéro de notice : A2017-078 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2016.1212356 En ligne : http://dx.doi.org/10.1080/13658816.2016.1212356 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=84340
in International journal of geographical information science IJGIS > vol 31 n° 3-4 (March-April 2017) . - pp 542 - 568[article]Exemplaires(2)
Code-barres Cote Support Localisation Section Disponibilité 079-2017021 RAB Revue Centre de documentation En réserve L003 Disponible 079-2017022 RAB Revue Centre de documentation En réserve L003 Disponible Extracting building patterns with multilevel graph partition and building grouping / Shihong Du in ISPRS Journal of photogrammetry and remote sensing, vol 122 (December 2016)PermalinkRepresentation and discovery of building patterns: a three-level relational approach / Shihong Du in International journal of geographical information science IJGIS, vol 30 n° 5-6 (May - June 2016)PermalinkPolygonal clustering analysis using multilevel graph-partition / Wanyi Wang in Transactions in GIS, vol 19 n° 5 (October 2015)PermalinkIntegrative representation and inference of qualitative locations about points, lines, and polygons / Shihong Du in International journal of geographical information science IJGIS, vol 29 n° 6 (June 2015)Permalink