Détail de l'auteur
Auteur Le Li |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Lidar with multi-temporal MODIS provide a means to upscale predictions of forest biomass / Le Li in ISPRS Journal of photogrammetry and remote sensing, vol 102 (April 2015)
[article]
Titre : Lidar with multi-temporal MODIS provide a means to upscale predictions of forest biomass Type de document : Article/Communication Auteurs : Le Li, Auteur ; Qinghua Guo, Auteur ; Shengli Tao, Auteur ; et al., Auteur Année de publication : 2015 Article en page(s) : pp 198 - 208 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] biomasse forestière
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] image Terra-MODIS
[Termes IGN] indice de végétation
[Termes IGN] régression linéaireRésumé : (auteur) Forests play a key role in the global carbon cycle, and forest above ground biomass (AGB) is an important indictor to the carbon storage capacity and the potential carbon pool size of a forest ecosystem. Accurate estimation of forest AGB has become increasingly important for a wide range of end-users. Although satellite remote sensing provides abundant observations to monitor forest coverage, validation of coarse-resolution AGB derived from satellite observations is difficult because of the scale mismatch between the footprints of satellite observations and field measurements. In this study, we use airborne Lidar to bridge the scale gaps between satellite-based and field-based studies, and evaluate satellite-derived indices to estimate regional forest AGB. We found that: (1) Lidar data can be used to accurately estimate forest AGB using tree height and tree quadratic height, (2) linear regression, among four tested models, achieve the best performance (R2 = 0.74; RMSE = 183.57 Mg/ha); (3) for MODIS-derived vegetation indices at varied spatial resolution (250–1000 m), accumulated NDVI, accumulated LAI, and accumulated FPAR could explain 53–74% variances of forest AGB, whereas accumulated NDVI derived from 1 km MODIS products gives higher R2 (74%) and lower RMSE (13.4 Mg/ha) than others. We conclude that Lidar data can be used to bridge the scale gap between satellite and field studies. Our results indicate that combining MODIS and Lidar data has the potential to estimate regional forest AGB. Numéro de notice : A2015-694 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2015.02.007 En ligne : https://doi.org/10.1016/j.isprsjprs.2015.02.007 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=78328
in ISPRS Journal of photogrammetry and remote sensing > vol 102 (April 2015) . - pp 198 - 208[article]