Détail de l'auteur
Auteur Desheng Liu |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Downscaling MODIS spectral bands using deep learning / Rohit Mukherjee in GIScience and remote sensing, vol 58 n° 8 (2021)
[article]
Titre : Downscaling MODIS spectral bands using deep learning Type de document : Article/Communication Auteurs : Rohit Mukherjee, Auteur ; Desheng Liu, Auteur Année de publication : 2021 Article en page(s) : pp 1300 - 1315 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] bande spectrale
[Termes IGN] image à basse résolution
[Termes IGN] image Terra-MODIS
[Termes IGN] image thermique
[Termes IGN] rayonnement proche infrarouge
[Termes IGN] réduction d'échelle
[Termes IGN] résolution multipleRésumé : (auteur) MODIS sensors are widely used in a broad range of environmental studies, many of which involve joint analysis of multiple MODIS spectral bands acquired at disparate spatial resolutions. To extract land surface information from multi-resolution MODIS spectral bands, existing studies often downscale lower resolution (LR) bands to match the higher resolution (HR) bands based on simple interpolation or more advanced statistical modeling. Statistical downscaling methods rely on the functional relationship between the LR spectral bands and HR spatial information, which may vary across different land surface types, making statistical downscaling methods less robust. In this paper, we propose an alternative approach based on deep learning to downscale 500 m and 1000 m spectral bands of MODIS to 250 m without additional spatial information. We employ a superresolution architecture based on an encoder decoder network. This deep learning-based method uses a custom loss function and a self-attention layer to preserve local and global spatial relationships of the predictions. We compare our approach with a statistical method specifically developed for downscaling MODIS spectral bands, an interpolation method widely used for downscaling multi-resolution spectral bands, and a deep learning superresolution architecture previously used for downscaling satellite imagery. Results show that our deep learning method outperforms on almost all spectral bands both quantitatively and qualitatively. In particular, our deep learning-based method performs very well on the thermal bands due to the larger scale difference between the input and target resolution. This study demonstrates that our proposed deep learning-based downscaling method can maintain the spatial and spectral fidelity of satellite images and contribute to the integration and enhancement of multi-resolution satellite imagery. Numéro de notice : A2021-124 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/15481603.2021.1984129 Date de publication en ligne : 26/10/2021 En ligne : https://doi.org/10.1080/15481603.2021.1984129 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99309
in GIScience and remote sensing > vol 58 n° 8 (2021) . - pp 1300 - 1315[article]Improving forest aboveground biomass estimation using seasonal Landsat NDVI time-series / Xiaolin Zhu in ISPRS Journal of photogrammetry and remote sensing, vol 102 (April 2015)
[article]
Titre : Improving forest aboveground biomass estimation using seasonal Landsat NDVI time-series Type de document : Article/Communication Auteurs : Xiaolin Zhu, Auteur ; Desheng Liu, Auteur Année de publication : 2015 Article en page(s) : pp 222 - 231 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] biomasse forestière
[Termes IGN] image Landsat
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] puits de carbone
[Termes IGN] série temporelle
[Termes IGN] variation saisonnièreRésumé : (auteur) Spatially explicit knowledge of aboveground biomass (AGB) in large areas is important for accurate carbon accounting. Landsat data have been widely used to provide efficient and timely estimates of forest AGB because of their long archive and relatively high spatial resolution. Previous studies have explored different empirical modeling approaches to estimate AGB, but most of them only used a single Landsat image in the peak season, which may cause a saturation problem and low accuracy. To improve the accuracy of AGB estimation using Landsat images, this study explored the use of NDVI seasonal time-series derived from Landsat images across different seasons to estimate AGB in southeast Ohio by six empirical modeling approaches. Results clearly show that NDVI in the fall season has a stronger correlation to AGB than in the peak season, and using seasonal NDVI time-series can result in a more accurate AGB estimation and less saturation than using a single NDVI. In comparing these different empirical approaches, it is difficult to decide which one is superior to the other because they have different strengths and their accuracy is generally similar, indicating that modeling methods may not be the key issue for improving the accuracy of AGB estimation from Landsat data. This study suggests that future research should pay more attention to seasonal time-series data, and especially the data from the fall season. Numéro de notice : A2015-695 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2014.08.014 En ligne : https://doi.org/10.1016/j.isprsjprs.2014.08.014 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=78329
in ISPRS Journal of photogrammetry and remote sensing > vol 102 (April 2015) . - pp 222 - 231[article]