Détail de l'auteur
Auteur Nicolas Courty |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Multiclass feature learning for hyperspectral image classification: Sparse and hierarchical solutions / Devis Tuia in ISPRS Journal of photogrammetry and remote sensing, vol 105 (July 2015)
[article]
Titre : Multiclass feature learning for hyperspectral image classification: Sparse and hierarchical solutions Type de document : Article/Communication Auteurs : Devis Tuia, Auteur ; Rémi Flamary, Auteur ; Nicolas Courty, Auteur Année de publication : 2015 Article en page(s) : pp 272 - 285 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image hyperspectrale
[Termes IGN] régression logistiqueRésumé : (auteur) In this paper, we tackle the question of discovering an effective set of spatial filters to solve hyperspectral classification problems. Instead of fixing a priori the filters and their parameters using expert knowledge, we let the model find them within random draws in the (possibly infinite) space of possible filters. We define an active set feature learner that includes in the model only features that improve the classifier. To this end, we consider a fast and linear classifier, multiclass logistic classification, and show that with a good representation (the filters discovered), such a simple classifier can reach at least state of the art performances. We apply the proposed active set learner in four hyperspectral image classification problems, including agricultural and urban classification at different resolutions, as well as multimodal data. We also propose a hierarchical setting, which allows to generate more complex banks of features that can better describe the nonlinearities present in the data. Numéro de notice : A2015-705 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2015.01.006 En ligne : https://doi.org/10.1016/j.isprsjprs.2015.01.006 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=78341
in ISPRS Journal of photogrammetry and remote sensing > vol 105 (July 2015) . - pp 272 - 285[article]