Détail de l'auteur
Auteur Yashar Balazadegan |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Tight integration of INS/Stereo VO/Digital map for land vehicle navigation / Fei Liu in Photogrammetric Engineering & Remote Sensing, PERS, vol 84 n° 1 (January 2018)
[article]
Titre : Tight integration of INS/Stereo VO/Digital map for land vehicle navigation Type de document : Article/Communication Auteurs : Fei Liu, Auteur ; Yashar Balazadegan, Auteur ; Yang Gao, Auteur Année de publication : 2018 Article en page(s) : pp 15 - 23 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Navigation et positionnement
[Termes IGN] centrale inertielle
[Termes IGN] correction géométrique
[Termes IGN] erreur instrumentale
[Termes IGN] filtre de Kalman
[Termes IGN] navigation à l'estime
[Termes IGN] odomètre
[Termes IGN] système de numérisation mobileRésumé : (Auteur) This paper proposes a method for tight integration of IMU (Inertial Measurement Unit), stereo VO (Visual Odometry) and digital map for land vehicle navigation, which effectively limits the quick drift of DR (Dead Reckoning) navigation system. In this method, the INS provides the dynamic information of the land vehicle, which is used to predict the position and attitude of cameras in order to obtain the predicted pixel coordinates of features on the image. The difference between the measured and predicted pixel coordinates is used to reduce the accumulated errors of INS. To implement the proposed method, an Extended Kalman filter (EKF) is first used to integrate the inertial and visual sensor data. The integrated solution of position, velocity and azimuth is then applied by fuzzy logic map matching (MM) to project the vehicle location on the correct road link. The projected position on the road link and the road link azimuth can finally be used to reduce the dead reckoning drifts. In this way, the accumulated system errors can be significantly reduced. The testing results indicate that the horizontal RMSE (root-mean-square-error) of the proposed method is less than 20 meters over a traveled distance of five kilometers and the relative horizontal error is below 0.4 percent. Numéro de notice : A2018-020 Affiliation des auteurs : non IGN Thématique : IMAGERIE/POSITIONNEMENT Nature : Article DOI : 10.14358/PERS.84.1.15 En ligne : https://doi.org/10.14358/PERS.84.1.15 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89167
in Photogrammetric Engineering & Remote Sensing, PERS > vol 84 n° 1 (January 2018) . - pp 15 - 23[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2018011 RAB Revue Centre de documentation En réserve L003 Disponible Tracking 3D moving objects based on GPS/IMU navigation solution, laser scanner point cloud and GIS data / Siavash Hosseinyalamdary in ISPRS International journal of geo-information, vol 4 n°3 (September 2015)
[article]
Titre : Tracking 3D moving objects based on GPS/IMU navigation solution, laser scanner point cloud and GIS data Type de document : Article/Communication Auteurs : Siavash Hosseinyalamdary, Auteur ; Yashar Balazadegan, Auteur ; Charles K. Toth, Auteur Année de publication : 2015 Article en page(s) : pp 1301 - 1316 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] détection d'objet
[Termes IGN] données localisées 3D
[Termes IGN] filtre de Kalman
[Termes IGN] objet géographique 3D
[Termes IGN] objet mobile
[Termes IGN] poursuite de cible
[Termes IGN] semis de points
[Termes IGN] surveillance routière
[Termes IGN] trafic routierRésumé : (auteur) Monitoring vehicular road traffic is a key component of any autonomous driving platform. Detecting moving objects, and tracking them, is crucial to navigating around objects and predicting their locations and trajectories. Laser sensors provide an excellent observation of the area around vehicles, but the point cloud of objects may be noisy, occluded, and prone to different errors. Consequently, object tracking is an open problem, especially for low-quality point clouds. This paper describes a pipeline to integrate various sensor data and prior information, such as a Geospatial Information System (GIS) map, to segment and track moving objects in a scene. We show that even a low-quality GIS map, such as OpenStreetMap (OSM), can improve the tracking accuracy, as well as decrease processing time. A bank of Kalman filters is used to track moving objects in a scene. In addition, we apply non-holonomic constraint to provide a better orientation estimation of moving objects. The results show that moving objects can be correctly detected, and accurately tracked, over time, based on modest quality Light Detection And Ranging (LiDAR) data, a coarse GIS map, and a fairly accurate Global Positioning System (GPS) and Inertial Measurement Unit (IMU) navigation solution. Numéro de notice : A2015-711 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi4031301 En ligne : https://doi.org/10.3390/ijgi4031301 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=78348
in ISPRS International journal of geo-information > vol 4 n°3 (September 2015) . - pp 1301 - 1316[article]