Détail de l'auteur
Auteur Alper Yilmaz |
Documents disponibles écrits par cet auteur (7)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
vol V-2-2022 - 2022 edition - XXIV ISPRS Congress “Imaging today, foreseeing tomorrow”, Commission II 2022 edition, 6–11 June 2022, Nice, France (Bulletin de ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences) / Alper YilmazContient
- Semantic segmentation of urban textured meshes through point sampling / Grégoire Grzeczkowicz in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-2-2022 (2022 edition)
- Efficient dike monitoring using terrestrial SFM photogrammetry / Laurent Froideval in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-2-2022 (2022 edition)
- Vegetation cover mapping from RGB webcam time series for land surface emissivity retrieval in high mountain areas / Benedikt Hiebl in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-2-2022 (2022 edition)
- Automatic training data generation in deep learning-aided semantic segmentation of heritage buildings / Arnadi Murtiyoso in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-2-2022 (2022 edition)
- K-means clustering based on omnivariance attribute for building detection from airborne lidar data / Renato César Dos santos in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-2-2022 (2022 edition)
- Deep learning for the detection of early signs for forest damage based on satellite imagery / Dennis Wittich in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-2-2022 (2022 edition)
- Railway lidar semantic segmentation with axially symmetrical convolutional learning / Antoine Manier in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-2-2022 (2022 edition)
- Effect of label noise in semantic segmentation of high resolution aerial images and height data / Arabinda Maiti in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-2-2022 (2022 edition)
- Learning from the past: crowd-driven active transfer learning for semantic segmentation of multi-temporal 3D point clouds / Michael Kölle in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-2-2022 (2022 edition)
- Virtual laser scanning of dynamic scenes created from real 4D topographic point cloud data / Lukas Winiwarter in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-2-2022 (2022 edition)
PPD: Pyramid Patch Descriptor via convolutional neural network / Jie Wan in Photogrammetric Engineering & Remote Sensing, PERS, vol 85 n° 9 (September 2019)
[article]
Titre : PPD: Pyramid Patch Descriptor via convolutional neural network Type de document : Article/Communication Auteurs : Jie Wan, Auteur ; Alper Yilmaz, Auteur ; Lei Yan, Auteur Année de publication : 2019 Article en page(s) : pp 673 - 686 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse comparative
[Termes IGN] appariement d'images
[Termes IGN] benchmark spatial
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] données localisées de référence
[Termes IGN] échantillonnage d'image
[Termes IGN] état de l'art
[Termes IGN] extraction de données
[Termes IGN] image aérienne
[Termes IGN] image satellite
[Termes IGN] jeu de données localiséesRésumé : (Auteur) Local features play an important role in remote sensing image matching, and handcrafted features have been excessively used in this area for a long time. This article proposes a pyramid convolutional neural triplet network that extracts a 128-dimensional deep descriptor that significantly improves the matching performance. The proposed approach first extracts deep descriptors of the anchor patches and corresponding positive patches in a batch using the proposed pyramid convolutional neural network. Following this step, the approaches chooses the closest negative patch for each anchor patch and corresponding positive patch pair to form the triplet sample based on the descriptor distances among all other image patches in the batch. These triplets are used to optimize the parameters of the network using a new loss function. We evaluated the proposed deep descriptors on two benchmark data sets (Brown and HPatches) as well as real image data sets. The results reveal that the proposed descriptor achieves the state-of-the-art performance on the Brown data set and a comparatively very high performance on the HPatches data set. The proposed approach finds more correct matches than the classical handcrafted feature descriptors on aerial image pairs and is observed to be robust to variations in the viewpoint and illumination. Numéro de notice : A2019-416 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.85.9.673 Date de publication en ligne : 01/09/2019 En ligne : https://doi.org/10.14358/PERS.85.9.673 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93543
in Photogrammetric Engineering & Remote Sensing, PERS > vol 85 n° 9 (September 2019) . - pp 673 - 686[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2019091 SL Revue Centre de documentation Revues en salle Disponible Registration of images to Lidar and GIS data without establishing explicit correspondences / Gabor Barsai in Photogrammetric Engineering & Remote Sensing, PERS, vol 83 n° 10 (October 2017)
[article]
Titre : Registration of images to Lidar and GIS data without establishing explicit correspondences Type de document : Article/Communication Auteurs : Gabor Barsai, Auteur ; Alper Yilmaz, Auteur ; Sudhagar Nagarajan, Auteur ; Panu Srestasathiern, Auteur Année de publication : 2017 Article en page(s) : pp 705 - 716 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] contour
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] fusion d'images
[Termes IGN] image aérienne oblique
[Termes IGN] méthode de réduction d'énergie
[Termes IGN] superposition d'images
[Termes IGN] variable aléatoireRésumé : (auteur) Recovering the camera orientation is a fundamental problem in photogrammetry for precision 3D recovery, orthophoto generation, and image registration. In this paper, we achieve this goal by fusing the image information with information extracted from different modalities, including lidar and GIS. In contrast to other approaches, which require feature correspondences, our approach exploits edges across the modalities without the necessity to explicitly establish correspondences. In the proposed approach, extracted edges from different modalities are not required to have analytical forms. This flexibility is achieved by minimizing a new cost function using a Bayesian approach, which takes the Euclidean distances between the projected edges extracted from the other data source and the edges extracted from the reference image as its random variable. The proposed formulation minimizes the overall distances between the sets of edges iteratively, such that the end product results in the correct camera parameters for the reference image as well as matching features across the modalities. The initial solution can be obtained from GPS/IMU data. The formulation is shown to successfully handle noise and missing observations in edges. Point matching methods may fail for oblique images, especially high oblique images. We eliminate the requirement for exact point-to-point matching. The feasibility of the method is experimented with nadir and oblique images. Numéro de notice : A2017-691 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.14358/PERS.83.10.705 En ligne : https://doi.org/10.14358/PERS.83.10.705 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=87858
in Photogrammetric Engineering & Remote Sensing, PERS > vol 83 n° 10 (October 2017) . - pp 705 - 716[article]vol IV-1/W1 - May 2017 - ISPRS Hannover Workshop: HRIGI 17 – CMRT 17 – ISA 17 – EuroCOW 17, 6–9 June 2017, Hannover, Germany (Bulletin de ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences) / Christian Heipke
[n° ou bulletin]
est un bulletin de ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences / International society for photogrammetry and remote sensing (1980 -) (2012 - )
Titre : vol IV-1/W1 - May 2017 - ISPRS Hannover Workshop: HRIGI 17 – CMRT 17 – ISA 17 – EuroCOW 17, 6–9 June 2017, Hannover, Germany Type de document : Périodique Auteurs : Christian Heipke, Éditeur scientifique ; Uwe Stilla, Éditeur scientifique ; Franz Rottensteiner, Éditeur scientifique ; Alper Yilmaz, Éditeur scientifique ; Michael Ying Yang, Éditeur scientifique ; Jan Skaloud, Éditeur scientifique ; Ismael Colomina, Éditeur scientifique ; Karsten Jacobsen, Éditeur scientifique Année de publication : 2017 Conférence : ISPRS 2017, Workshops HRIGI – CMRT – ISA – EuroCOW 06/06/2017 09/06/2017 Hanovre Allemagne ISPRS OA Annals Langues : Français (fre) Numéro de notice : sans Affiliation des auteurs : non IGN Nature : Numéro de périodique En ligne : https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/IV-1-W1/index.h [...] Format de la ressource électronique : URL bulletin Permalink : https://documentation.ensg.eu/index.php?lvl=bulletin_display&id=31126 [n° ou bulletin]Contient
- Geometric features and their relevance for 3D point cloud classification / Martin Weinmann in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol IV-1/W1 (May 2017)
- Investigating the potential of deep neural networks for large-scale classification of very high resolution satellite images / Tristan Postadjian in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol IV-1/W1 (May 2017)
- Disocclusion of 3D LiDAR point clouds using range images / Pierre Biasutti in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol IV-1/W1 (May 2017)
Titre : ISPRS Hannover Workshop: HRIGI 17 – CMRT 17 – ISA 17 – EuroCOW 17 Type de document : Actes de congrès Auteurs : Christian Heipke, Éditeur scientifique ; Karsten Jacobsen, Éditeur scientifique ; Uwe Stilla, Éditeur scientifique ; Franz Rottensteiner, Éditeur scientifique ; Alper Yilmaz, Éditeur scientifique ; Michael Ying Yang, Éditeur scientifique ; Jan Skaloud, Éditeur scientifique ; Ismael Colomina, Éditeur scientifique Editeur : International Society for Photogrammetry and Remote Sensing ISPRS Année de publication : 2017 Collection : International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, ISSN 1682-1750 num. 42-1/W1 Conférence : ISPRS 2017 Workshops HRIGI – CMRT – ISA – EuroCOW 06/06/2017 09/06/2017 Hanovre Allemagne ISPRS OA Archives Langues : Anglais (eng) Numéro de notice : 17447 Affiliation des auteurs : non IGN Nature : Actes En ligne : https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-1-W1/index. [...] Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89328 Contient
- Weakly supervised segmentation-aided classification of urban scenes from 3D LIDAR point clouds / Stéphane Guinard (2017)
- A two-step decision fusion strategy: application to hyperspectral and multispectral images for urban classification / Walid Ouerghemmi (2017)
- Second iteration of photogrammetric pipeline to enhance the accuracy of image pose estimation / Truong Giang Nguyen (2017)
Automatic registration of optical aerial imagery to a LiDAR point cloud for generation of city models / Bernard O. Abayowa in ISPRS Journal of photogrammetry and remote sensing, vol 106 (August 2015)Permalinkvol II-3 W2 - November 2013 - WGIII/3 ISA13 – The ISPRS Workshop on Image Sequence Analysis 2013 [actes] (Bulletin de ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences) / Clément MalletPermalink