Détail de l'auteur
Auteur Loïc Paul Dutrieux |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Monitoring forest cover loss using multiple data streams, a case study of a tropical dry forest in Bolivia / Loïc Paul Dutrieux in ISPRS Journal of photogrammetry and remote sensing, vol 107 (September 2015)
[article]
Titre : Monitoring forest cover loss using multiple data streams, a case study of a tropical dry forest in Bolivia Type de document : Article/Communication Auteurs : Loïc Paul Dutrieux, Auteur ; Jan Verbesselt, Auteur ; Lammert Kooistra, Auteur ; Martin Herold, Auteur Année de publication : 2015 Article en page(s) : pp 112 - 125 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Bolivie
[Termes IGN] déboisement
[Termes IGN] détection de changement
[Termes IGN] forêt tropicale
[Termes IGN] image Terra-MODIS
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] sécheresse
[Termes IGN] série temporelle
[Termes IGN] variabilitéRésumé : (auteur) Automatically detecting forest disturbances as they occur can be extremely challenging for certain types of environments, particularly those presenting strong natural variations. Here, we use a generic structural break detection framework (BFAST) to improve the monitoring of forest cover loss by combining multiple data streams. Forest change monitoring is performed using Landsat data in combination with MODIS or rainfall data to further improve the modelling and monitoring. We tested the use of the Normalized Difference Vegetation Index (NDVI) from the Moderate Resolution Imaging Spectroradiometer (MODIS) with varying spatial aggregation window sizes as well as a rainfall derived index as external regressors. The method was evaluated on a dry tropical forest area in lowland Bolivia where forest cover loss is known to occur, and we validated the results against a set of ground truth samples manually interpreted using the TimeSync environment. We found that the addition of an external regressor allows to take advantage of the difference in spatial extent between human induced and naturally induced variations and only detect the processes of interest. Of all configurations, we found the 13 by 13 km MODIS NDVI window to be the most successful, with an overall accuracy of 87%. Compared with a single pixel approach, the proposed method produced better time-series model fits resulting in increases of overall accuracy (from 82% to 87%), and decrease in omission and commission errors (from 33% to 24% and from 3% to 0% respectively). The presented approach seems particularly relevant for areas with high inter-annual natural variability, such as forests regularly experiencing exceptional drought events. Numéro de notice : A2015-726 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2015.03.015 En ligne : https://doi.org/10.1016/j.isprsjprs.2015.03.015 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=78378
in ISPRS Journal of photogrammetry and remote sensing > vol 107 (September 2015) . - pp 112 - 125[article]