Détail de l'auteur
Auteur Xinwu Li |
Documents disponibles écrits par cet auteur (3)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Forest height estimation from a robust TomoSAR method in the case of small tomographic aperture with airborne dataset at L-band / Xing Peng in Remote sensing, vol 13 n° 11 (June-1 2021)
[article]
Titre : Forest height estimation from a robust TomoSAR method in the case of small tomographic aperture with airborne dataset at L-band Type de document : Article/Communication Auteurs : Xing Peng, Auteur ; Xinwu Li, Auteur ; Yanan Du, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 2147 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] bande L
[Termes IGN] données localisées 3D
[Termes IGN] forêt boréale
[Termes IGN] hauteur des arbres
[Termes IGN] image 3D
[Termes IGN] image radar moirée
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] itération
[Termes IGN] matrice de covariance
[Termes IGN] modèle numérique de surface de la canopée
[Termes IGN] semis de points
[Termes IGN] Suède
[Termes IGN] tomographie radarRésumé : (auteur) Forest height is an essential input parameter for forest biomass estimation, ecological modeling, and the carbon cycle. Tomographic synthetic aperture radar (TomoSAR), as a three-dimensional imaging technique, has already been successfully used in forest areas to retrieve the forest height. The nonparametric iterative adaptive approach (IAA) has been recently introduced in TomoSAR, achieving a good compromise between high resolution and computing efficiency. However, the performance of the IAA algorithm is significantly degraded in the case of a small tomographic aperture. To overcome this shortcoming, this paper proposes the robust IAA (RIAA) algorithm for SAR tomography. The proposed approach follows the framework of the IAA algorithm, but also considers the noise term in the covariance matrix estimation. By doing so, the condition number of the covariance matrix can be prevented from being too large, improving the robustness of the forest height estimation with the IAA algorithm. A set of simulated experiments was carried out, and the results validated the superiority of the RIAA estimator in the case of a small tomographic aperture. Moreover, a number of fully polarimetric L-band airborne tomographic SAR images acquired from the ESA BioSAR 2008 campaign over the Krycklan Catchment, Northern Sweden, were collected for test purposes. The results showed that the RIAA algorithm performed better in reconstructing the vertical structure of the forest than the IAA algorithm in areas with a small tomographic aperture. Finally, the forest height was estimated by both the RIAA and IAA TomoSAR methods, and the estimation accuracy of the RIAA algorithm was 2.01 m, which is more accurate than the IAA algorithm with 3.25 m. Numéro de notice : A2021-441 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.3390/rs13112147 Date de publication en ligne : 29/05/2021 En ligne : https://doi.org/10.3390/rs13112147 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97828
in Remote sensing > vol 13 n° 11 (June-1 2021) . - n° 2147[article]Compressive sensing for multibaseline polarimetric SAR tomography of forested areas / Xinwu Li in IEEE Transactions on geoscience and remote sensing, vol 54 n° 1 (January 2016)
[article]
Titre : Compressive sensing for multibaseline polarimetric SAR tomography of forested areas Type de document : Article/Communication Auteurs : Xinwu Li, Auteur ; Lei Liang, Auteur ; Huadong Guo, Auteur ; Yue Huang, Auteur Année de publication : 2016 Article en page(s) : pp 153 - 166 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] bande P
[Termes IGN] compression d'image
[Termes IGN] décomposition d'image
[Termes IGN] données polarimétriques
[Termes IGN] forêt tropicale
[Termes IGN] Guyane (département français)
[Termes IGN] image aérienne
[Termes IGN] image radar moirée
[Termes IGN] interféromètrie par radar à antenne synthétique
[Termes IGN] réflectivité
[Termes IGN] tomographie radarRésumé : (Auteur) The structure of forests is an important indicator of ecosystem dynamics and enables the modeling and monitoring of ecological change. Synthetic aperture radar tomography (TomoSAR) provides scene reflectivity estimation of vegetation along elevation coordinates. Due to the advantages of superresolution imaging and a small number of measurements, compressive sensing (CS) inversion techniques for SAR tomography were successfully developed and applied. This paper addresses the 3-D imaging of forested areas based on the framework of CS using fully polarimetric (FP) multibaseline SAR interferometric (MB-InSAR) tomography at P-band. A new CS-based FP MB-InSAR tomography method is proposed: a sum of Kronecker product (SKP) decomposition-based CS FP MB-InSAR tomography method (FP-SKPCS TomoSAR method). The method, based on an assumption that the reflectivity signal of a single scattering mechanism (SM) is more sparse than that of a composite of SMs, recovers the reflectivity profile of different SMs by using the CS technique. This method not only allows superresolution imaging with a low number of acquisitions but also can estimate the polarimetric SM of the vertical structure of forested areas. The effectiveness of these novel techniques for polarimetric SAR tomography is demonstrated using FP P-band airborne data sets acquired by the ONERA SETHI airborne system over a test site in Paracou, French Guiana, and the results of the vertical structure of forested areas derived by the method are verified by in situ test data. Numéro de notice : A2016-076 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2015.2451992 En ligne : http://dx.doi.org/10.1109/TGRS.2015.2451992 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=79844
in IEEE Transactions on geoscience and remote sensing > vol 54 n° 1 (January 2016) . - pp 153 - 166[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-2016011 SL Revue Centre de documentation Revues en salle Disponible Multibaseline polarimetric synthetic aperture radar tomography of forested areas using wavelet-based distribution compressive sensing / Lei Liang in Journal of applied remote sensing, vol 9 (2015)
[article]
Titre : Multibaseline polarimetric synthetic aperture radar tomography of forested areas using wavelet-based distribution compressive sensing Type de document : Article/Communication Auteurs : Lei Liang, Auteur ; Xinwu Li, Auteur ; Xizhang Gao, Auteur ; Huadong Guo, Auteur Année de publication : 2015 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] acquisition comprimée
[Termes IGN] bande P
[Termes IGN] données polarimétriques
[Termes IGN] forêt tropicale
[Termes IGN] Guyane (département français)
[Termes IGN] image radar moirée
[Termes IGN] modélisation 3D
[Termes IGN] structure d'un peuplement forestier
[Termes IGN] tomographie radarRésumé : (auteur) The three-dimensional (3-D) structure of forests, especially the vertical structure, is an important parameter of forest ecosystem modeling for monitoring ecological change. Synthetic aperture radar tomography (TomoSAR) provides scene reflectivity estimation of vegetation along elevation coordinates. Due to the advantages of super-resolution imaging and a small number of measurements, distribution compressive sensing (DCS) inversion techniques for polarimetric SAR tomography were successfully developed and applied. This paper addresses the 3-D imaging of forested areas based on the framework of DCS using fully polarimetric (FP) multibaseline SAR interferometric (MB-InSAR) tomography at the P-band. A new DCS-based FP TomoSAR method is proposed: a new wavelet-based distributed compressive sensing FP TomoSAR method (FP-WDCS TomoSAR method). The method takes advantage of the joint sparsity between polarimetric channel signals in the wavelet domain to jointly inverse the reflectivity profiles in each channel. The method not only allows high accuracy and super-resolution imaging with a low number of acquisitions, but can also obtain the polarization information of the vertical structure of forested areas. The effectiveness of the techniques for polarimetric SAR tomography is demonstrated using FP P-band airborne datasets acquired by the ONERA SETHI airborne system over a test site in Paracou, French Guiana. Numéro de notice : A2015-738 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1117/1.JRS.9.095048 En ligne : http://remotesensing.spiedigitallibrary.org/article.aspx?articleid=2466931 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=78439
in Journal of applied remote sensing > vol 9 (2015)[article]