Détail de l'auteur
Auteur Roeland Boeters |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Automatically enhancing CityGML LOD2 models with a corresponding indoor geometry / Roeland Boeters in International journal of geographical information science IJGIS, vol 29 n° 12 (December 2015)
[article]
Titre : Automatically enhancing CityGML LOD2 models with a corresponding indoor geometry Type de document : Article/Communication Auteurs : Roeland Boeters, Auteur ; Ken Arroyo Ohori, Auteur ; Filip Biljecki, Auteur ; Sisi Zlatanova, Auteur Année de publication : 2015 Article en page(s) : pp 2248 - 2268 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] CityGML
[Termes IGN] géométrie
[Termes IGN] levé urbain
[Termes IGN] niveau de détail
[Termes IGN] positionnement en intérieur
[Termes IGN] reconstruction 3D du bâtiRésumé : (Auteur) The international standard CityGML defines five levels of detail (LODs) for 3D city models, but only the highest of these (LOD4) supports modelling the indoor geometry of a building, which must be acquired in correspondingly high detail and therefore at a high cost. Whereas simple 3D city models of the exterior of buildings (e.g. CityGML LOD2) can be generated largely automatically, and are thus now widely available and have a great variety of applications, similarly simple models containing their indoor geometries are rare.
In this paper we present two contributions: (i) the definition of a level of detail LOD2+, which extends the CityGML LOD2 specification with indoor building geometries of comparable complexity to their exterior geometries in LOD2; and more importantly (ii) a method for automatically generating such indoor geometries based on existing CityGML LOD2 exterior geometries. We validate our method by generating LOD2+ models for a subset of the Rotterdam 3D data set and visually comparing these models to their real counterparts in building blueprints and imagery from Google Street View and Bing Maps. Furthermore, we use the LOD2+ models to compute the net internal area of each dwelling and validate our results by comparing these values to the ones registered in official government data sets.Numéro de notice : A2015-624 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2015.1072201 En ligne : https://doi.org/10.1080/13658816.2015.1072201 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=78093
in International journal of geographical information science IJGIS > vol 29 n° 12 (December 2015) . - pp 2248 - 2268[article]