Détail de l'auteur
Auteur Cezary Ziemlicki |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Extracting semantics of individual places from movement data by analyzing temporal patterns of visits / Gennady Andrienko (2013)
contenu dans Proceedings of the Sixth ACM SIGSPATIAL International Workshop on Computational Transportation Science / Craig A. Knoblock (2013)
Titre : Extracting semantics of individual places from movement data by analyzing temporal patterns of visits Type de document : Article/Communication Auteurs : Gennady Andrienko, Auteur ; Natalia Andrienko, Auteur ; Georg Fuchs, Auteur ; Ana-Maria Olteanu-Raimond , Auteur ; Juergen (Jürgen) Symanzik, Auteur ; Cezary Ziemlicki, Auteur Editeur : New York [Etats-Unis] : Association for computing machinery ACM Année de publication : 2013 Conférence : IWCTS 2013, 6th ACM SIGSPATIAL International Workshop on Computational Transportation Science 05/11/2013 08/11/2013 Orlando Floride - Etats-Unis Proceedings ACM Langues : Anglais (eng) Résumé : (auteur) Data reflecting movements of people, such as GPS or GSM tracks, can be a source of information about mobility behaviors and activities of people. Such information is required for various kinds of spatial planning in the public and business sectors. Movement data by themselves are semantically poor. Meaningful information can be derived by means of interactive visual analysis performed by a human expert; however, this is only possible for data about a small number of people. We suggest an approach that allows scaling to large datasets reflecting movements of numerous people. It includes extracting stops, clustering them for identifying personal places of interest (POIs), and creating temporal signatures of the POIs characterizing the temporal distribution of the stops with respect to the daily and weekly time cycles and the time line. The analyst can give meanings to selected POIs based on their temporal signatures (i.e., classify them as home, work, etc.), and then POIs with similar signatures can be classified automatically. We demonstrate the possibilities for interactive visual semantic analysis by example of GSM, GPS, and Twitter data. GPS data allow inferring richer semantic information, but temporal signatures alone may be insufficient for interpreting short stops. Twitter data are similar to GSM data but additionally contain message texts, which can help in place interpretation. We plan to develop an intelligent system that learns how to classify personal places and trips while a human analyst visually analyzes and semantically annotates selected subsets of movement data. Numéro de notice : C2013-022 Affiliation des auteurs : LASTIG COGIT+Ext (2012-2019) Thématique : GEOMATIQUE Nature : Communication DOI : 10.1145/2534848.2534851 En ligne : http://dx.doi.org/10.1145/2534848.2534851 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=80134 Documents numériques
en open access
Extracting semanticsAdobe Acrobat PDF