Détail de l'auteur
Auteur Marianne Greff-Lefftz |
Documents disponibles écrits par cet auteur (11)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Dense mantle flows periodically spaced below ocean basins / Isabelle Panet in Earth and planetary science letters, vol 594 (15 September 2022)
[article]
Titre : Dense mantle flows periodically spaced below ocean basins Type de document : Article/Communication Auteurs : Isabelle Panet , Auteur ; Marianne Greff-Lefftz, Auteur ; Barbara Romanowicz, Auteur Année de publication : 2022 Projets : Université de Paris / Clerici, Christine Article en page(s) : n° 117745 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes IGN] champ de pesanteur terrestre
[Termes IGN] convection
[Termes IGN] déformation de la croute terrestre
[Termes IGN] dynamique des fluides
[Termes IGN] fond marin
[Termes IGN] Indien (océan)
[Termes IGN] lithosphère
[Termes IGN] manteau terrestre
[Termes IGN] Pacifique (océan)Résumé : (auteur) Understanding mantle flow is key to elucidate how deep Earth dynamics relate to tectonics at the global scale. The convective mass transport is reflected in lateral variations of the gravity field, seismic velocities, as well as deformations of the Earth's surface. Yet, upper to mid-mantle dynamics have been difficult to constrain at the medium scales of thousands of km. Here, we analyze the second-order horizontal derivatives of seafloor topography and of the gravity potential over the Pacific and Northern Indian ocean basins, and provide evidence for periodic undulations of 1600-2000 km wavelength in both signals, elongated along the direction of absolute plate motion. We investigate potential crustal and lithospheric sources and show that at least part of this signal must originate below the lithosphere, with alignments of sub-lithospheric upper mantle mass excess below seafloor lows. Furthermore, we find that these alignments coincide geographically over wide areas with similarly periodic slow seismic velocity fingers located at upper mantle depths. These two fields may thus record an intermediate scale of mantle convection below ocean basins, which cannot be explained by purely thermal convection and requires instead lateral variations in composition in the upper mantle. Elucidating the nature of the detected mass excess sources coincident with the slow seismic velocities calls for a joint dynamical modeling of all observations in a thermo-chemical context. Numéro de notice : A2022-692 Affiliation des auteurs : UMR IPGP-Géod+Ext (2020- ) Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.epsl.2022.117745 En ligne : https://doi.org/10.1016/j.epsl.2022.117745 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101809
in Earth and planetary science letters > vol 594 (15 September 2022) . - n° 117745[article]Self-consistent determination of the Earth’s GM, geocenter motion and figure axis orientation / Alexandre Couhert in Journal of geodesy, vol 94 n° 12 (December 2020)
[article]
Titre : Self-consistent determination of the Earth’s GM, geocenter motion and figure axis orientation Type de document : Article/Communication Auteurs : Alexandre Couhert, Auteur ; Christian Bizouard, Auteur ; F. Mercier, Auteur ; Kristel Chanard , Auteur ; Marianne Greff-Lefftz, Auteur ; Pierre Exertier, Auteur Année de publication : 2020 Projets : 1-Pas de projet / Clerici, Christine Article en page(s) : n° 113 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes IGN] données Ajisai
[Termes IGN] données Jason
[Termes IGN] données Lageos
[Termes IGN] données LARES
[Termes IGN] données Starlette
[Termes IGN] données Stella
[Termes IGN] données TLS (télémétrie)
[Termes IGN] erreur de modèle
[Termes IGN] harmonique sphérique
[Termes IGN] incertitude géométrique
[Termes IGN] mouvement du géocentre
[Termes IGN] surface de la merRésumé : (auteur) The very low-degree Earth’s gravity coefficients, associated with the largest-scale mass redistribution in the Earth’s fluid envelope (atmosphere, oceans and continental hydrology), are the most poorly known. In particular, the first three degree geopotential terms are important, as they relate to intrinsic Earth’s mass references: gravitational coefficient (GM) of the Earth (degree 0), geocenter motion (degree 1), Earth’s figure axis orientation (degree 2). This paper presents a self-consistent determination of these three properties of the Earth. The main objective is to deal with the remaining sources of altimetry satellite orbit uncertainties affecting the fundamental record of sea surface height measurements. The analysis identifies the modeling errors, which should be mitigated when estimating the geocenter coordinates from Satellite Laser Ranging (SLR) observations. The long-term behavior of the degree-0 and -2 spherical harmonics is also observed over the 34-year period 1984–2017 from the long-time history of satellite laser tracking to geodetic spherical satellites. From the analysis of the evolution of these two coefficients, constraints regarding the Earth’s rheology and uncertainties in the value of GM could be inferred. Overall, the influence of the orbit characteristics, SLR station ranging/position biases and satellite signature effects, measurement modeling errors (tropospheric corrections, non-tidal deformations) are also discussed. Numéro de notice : A2020-330 Affiliation des auteurs : UMR IPGP-Géod+Ext (2020- ) Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-020-01450-z Date de publication en ligne : 18/11/2020 En ligne : https://doi.org/10.1007/s00190-020-01450-z Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96858
in Journal of geodesy > vol 94 n° 12 (December 2020) . - n° 113[article]Reconciling upper mantle seismic velocity and density structure below ocean basins / Isabelle Panet (2019)
Titre : Reconciling upper mantle seismic velocity and density structure below ocean basins Type de document : Article/Communication Auteurs : Isabelle Panet , Auteur ; Barbara Romanowicz, Auteur ; Marianne Greff-Lefftz, Auteur Editeur : Saint-Mandé : Institut national de l'information géographique et forestière - IGN (2012-) Année de publication : 2019 Projets : 1-Pas de projet / Clerici, Christine Conférence : AGU 2019 Fall Meeting 09/12/2019 13/12/2019 San Francisco Californie - Etats-Unis programme sans actes Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes IGN] champ de pesanteur terrestre
[Termes IGN] déformation de la croute terrestre
[Termes IGN] données bathymétriques
[Termes IGN] données GRACE
[Termes IGN] fond marin
[Termes IGN] geoïde marin
[Termes IGN] géophysique interne
[Termes IGN] Indien (océan)
[Termes IGN] manteau terrestre
[Termes IGN] Pacifique (océan)
[Termes IGN] structure géologique
[Termes IGN] vitesse de déplacementRésumé : (auteur) Imaging the spatial pattern of mantle flows and constraining their mass is one of the keys to understand the character of mantle convection inside the Earth, and its interactions with plate motions. The horizontal planform of the flows, their heterogeneity and mass transport at depth, are reflected in variations of the gravity field and seismic velocities, as well as deformations of the Earth's surface. Over ocean basins, these observables show an elusive medium-scale structure. A 1500-2000 km wavelength directional fabric following the present-day absolute plate motion is present in the Pacific Ocean in GRACE satellite gravity data (Hayn et al., 2012), while 2000-km wavelength slow shear velocity anomalies sharing a similar orientation are found in seismic tomography at upper mantle depths below the oceans (SEMUM2, French et al., 2013). Today, the dynamic processes at the origin of these observations remain unresolved.
Here, we develop a joint analysis of satellite gravity and bathymetry data together with the SEMUM2 seismic tomography model, in order to advance our understanding of upper to mid-mantle flows below the oceans. First, we enhance and reconstruct the medium-scale gravity and seafloor topography signals aligned with the present-day plate motion from an analysis of the rates of gravity vector variations and seafloor slopes. Then, we compare the obtained signals with the spatial distribution of shear velocity anomalies at depth. We show that slow velocity anomalies coincide with geoid lows, depressions in the seafloor topography, and mass excess in the mantle, in the Pacific ocean and part of the Indian ocean. We first consider a purely thermal interpretation of the seismic velocity variations, associated with medium-scale convective rolls in the upper to mid-mantle, a process able to only explain the observed geometry of anomalies. Investigating whether the needed mass excess arises from lithospheric or deeper sources, such as at the level of the 660-km interface, we conclude that it lies more likely within the slow velocity anomalies themselves, suggesting hot and dense structures. We finally discuss the possible meaning and implications of these results.Numéro de notice : C2019-058 Affiliation des auteurs : Géodésie+Ext (mi2018-2019) Thématique : POSITIONNEMENT Nature : Poster nature-HAL : Poster-avec-CL DOI : sans Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96896 Inverting Glacial Isostatic Adjustment signal using Bayesian framework and two linearly relaxing rheologies / Lambert Caron in Geophysical journal international, vol 209 n° 2 (May 2017)
[article]
Titre : Inverting Glacial Isostatic Adjustment signal using Bayesian framework and two linearly relaxing rheologies Type de document : Article/Communication Auteurs : Lambert Caron, Auteur ; Laurent Métivier , Auteur ; Marianne Greff-Lefftz, Auteur ; Luce Fleitout, Auteur ; Hélène Rouby , Auteur Année de publication : 2017 Projets : TOSCA / Clerici, Christine Article en page(s) : pp 1126 - 1147 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de géodésie spatiale
[Termes IGN] anomalie de pesanteur
[Termes IGN] calotte glaciaire
[Termes IGN] élasticité
[Termes IGN] gravimétrie spatiale
[Termes IGN] manteau terrestre
[Termes IGN] méthode de Monte-Carlo par chaînes de Markov
[Termes IGN] rebond post-glaciaire
[Termes IGN] rhéologieRésumé : (Auteur) Glacial Isostatic Adjustment (GIA) models commonly assume a mantle with a viscoelastic Maxwell rheology and a fixed ice history model. Here, we use a Bayesian Monte Carlo approach with a Markov chain formalism to invert the global GIA signal simultaneously for the mechanical properties of the mantle and the volumes of the ice sheets, using as starting ice models two previously published ice histories. Two stress relaxing rheologies are considered: Burgers and Maxwell linear viscoelasticities. A total of 5720 global palaeo sea level records are used, covering the last 35 kyr. Our goal is not only to seek the model best fitting this data set, but also to determine and display the range of possible solutions with their respective probability of explaining the data. In all cases, our a posteriori probability maps exhibit the classic character of solutions for GIA-determined mantle viscosity with two distinct peaks. What is new in our treatment is the presence of the bi-viscous Burgers rheology and the fact that we invert rheology jointly with ice history, in combination with the greatly expanded palaeo sea level records. The solutions tend to be characterized by an upper-mantle viscosity of around 5 × 1020 Pa s with one preferred lower-mantle viscosities at 3 × 1021 Pa s and the other more than 2 × 1022 Pa s, a rather classical pairing. Best-fitting models depend upon the starting ice history and the stress relaxing law. A first peak (P1) has the highest probability only in the case with a Maxwell rheology and ice history based on ICE-5G, while the second peak (P2) is favoured for ANU-based ice history or Burgers stress relaxation. The latter solution also may satisfy lower-mantle viscosity inferences from long-term geodynamics and gravity gradient anomalies over Laurentia. P2 is also consistent with large Laurentian and Fennoscandian ice-sheet volumes at the Last Glacial Maximum (LGM) and smaller LGM Antarctic ice volume than in either ICE-5G or ANU. Exploration of a bi-viscous linear relaxing rheology in GIA now seems logical due to a new set of requirements to satisfy observations of transient post-seismic flow seen so ubiquitously in space gravimetry and other global geodetic data. Numéro de notice : A2017-402 Affiliation des auteurs : LASTIG LAREG+Ext (2012-mi2018) Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1093/gji/ggx083 Date de publication en ligne : 27/02/2017 En ligne : https://doi.org/10.1093/gji/ggx083 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=86108
in Geophysical journal international > vol 209 n° 2 (May 2017) . - pp 1126 - 1147[article]Evidence for postglacial signatures in gravity gradients: A clue in lower mantle viscosity / Laurent Métivier in Earth and planetary science letters, vol 452 (October 2016)
[article]
Titre : Evidence for postglacial signatures in gravity gradients: A clue in lower mantle viscosity Type de document : Article/Communication Auteurs : Laurent Métivier , Auteur ; Lambert Caron, Auteur ; Marianne Greff-Lefftz, Auteur ; Gwendoline Pajot-Métivier , Auteur ; Luce Fleitout, Auteur ; Hélène Rouby , Auteur Année de publication : 2016 Article en page(s) : pp 146 - 156 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes IGN] Amérique du nord
[Termes IGN] anomalie de pesanteur
[Termes IGN] déformation de la croute terrestre
[Termes IGN] gradient de gravitation
[Termes IGN] manteau terrestre
[Termes IGN] paléocontinent
[Termes IGN] viscositéRésumé : (auteur) The Earth's surface was depressed under the weight of ice during the last glaciations. Glacial Isostatic Adjustment (GIA) induces the slow recession of the trough that is left after deglaciation and is responsible for a contemporary uplift rate of more than 1 cm/yr around Hudson Bay. The present-day residual depression, an indicator of still-ongoing GIA, is difficult to identify in the observed topography, which is predominantly sensitive to crustal heterogeneities. According to the most widespread GIA models, which feature a viscosity of 2–3×1021 Pa s2–3×1021 Pa s on top of the lower mantle, the trough is approximately 100 m deep and cannot explain the observed gravity anomalies across North America. These large anomalies are therefore usually attributed to subcontinental density heterogeneities in the tectosphere or to slab downwelling in the deep mantle.
Here, we use observed gravity gradients (GG) to show that the uncompensated GIA trough is four times larger than expected and that it is the main source of the North American static gravity signal. We search for the contribution to these GGs from mantle mass anomalies, which are deduced from seismic tomography and are mechanically coupled to the global mantle flow. This contribution is found to be small over Laurentia, and at least 82% of the GGs are caused by GIA. Such a contribution from GIA in these GG observations implies a viscosity that is greater than 1022 Pa s1022 Pa s in the lower mantle.
Our conclusions are a plea for GIA models with a highly viscous lower mantle, which confirm inferences from mantle dynamic models. Any change in GIA modelling has important paleoclimatological and environmental implications, encouraging scientists to re-evaluate the past ice history at a global scale. These implications, in turn, affect the contribution of bedrock uplift to the contemporaneous mass balance over Antarctica and Greenland and thus the present-day ice-melting rate as deduced from the GRACE space mission. Additionally, studies of the thermo-chemical structure of the lithosphere/crust under North America that exploit gravity or geodetic data should be corrected for a GIA model, which is not the case today.Numéro de notice : A2016-906 Affiliation des auteurs : LASTIG LAREG+Ext (2012-mi2018) Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.epsl.2016.07.034 Date de publication en ligne : 16/08/2016 En ligne : http://dx.doi.org/10.1016/j.epsl.2016.07.034 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=83034
in Earth and planetary science letters > vol 452 (October 2016) . - pp 146 - 156[article]Joint analysis of GOCE gravity gradients data of gravitational potential and of gravity with seismological and geodynamic observations to infer mantle properties / Marianne Greff-Lefftz in Geophysical journal international, vol 205 n° 1 (April 2016)PermalinkMapping the mass distribution of Earth's mantle using satellite-derived gravity gradients / Isabelle Panet in Nature geoscience, vol 7 n° 2 (February 2014)PermalinkErratum to “On secular geocenter motion: The impact of climate changes” / Laurent Métivier in Earth and planetary science letters, vol 306 n° 1-2 (June 2011)PermalinkOn secular geocenter motion: The impact of climate changes / Laurent Métivier in Earth and planetary science letters, vol 296 n° 3-4 (August 2010)PermalinkDynamic mantle density heterogeneities and global geodetic observables / Marianne Greff-Lefftz in Geophysical journal international, vol 180 n° 3 (March 2010)PermalinkRotational bulge and one plume convection pattern: Influence on Martian true polar wander [short paper] / Hélène Rouby in Earth and planetary science letters, vol 272 n° 1-2 (30 July 2008)Permalink