Détail de l'auteur
Auteur Qingwang Wang |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
A discriminative tensor representation model for feature extraction and classification of multispectral LiDAR data / Qingwang Wang in IEEE Transactions on geoscience and remote sensing, vol 58 n° 3 (March 2020)
[article]
Titre : A discriminative tensor representation model for feature extraction and classification of multispectral LiDAR data Type de document : Article/Communication Auteurs : Qingwang Wang, Auteur ; Yanfeng Gu, Auteur Année de publication : 2020 Article en page(s) : pp 1568 -1586 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] Amérique du nord
[Termes IGN] analyse discriminante
[Termes IGN] calcul tensoriel
[Termes IGN] carte d'occupation du sol
[Termes IGN] classification multibande
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] état de l'art
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image multibande
[Termes IGN] modèle géométrique
[Termes IGN] semis de points
[Termes IGN] tenseur
[Termes IGN] vectorisation
[Termes IGN] voisinage (relation topologique)Résumé : (Auteur) Multispectral light detection and ranging (MS-LiDAR) systems open the door to the possibility in the 3-D land cover classification at a finer scale using only point cloud data. This article proposes a model based on the tensor representation for multispectral point cloud classification. The proposed method combines the 3-D local spatial structure of each multispectral point by characterizing the point with a second-order tensor. The first mode of the tensor indicates the spatial location and spectral information of each point (i.e., the row of the second-order tensor) and the second mode denotes the neighborhood geometric and spectral structures (i.e., the column of the second-order tensor). Then we develop a novel tensor manifold discriminant embedding (TMDE) algorithm to extract the geometric–spectral features for multispectral point clouds classification. TMDE solves the mapping matrices of each mode by preserving the intraclass samples’ distribution further making it more compact and maximizing the distance of different classes. Finally, the support vector machine classifier with the extracted features as input is used to implement the classification of multispectral point clouds. Experiments are conducted on two real multispectral point cloud data sets. The experimental results demonstrate that the proposed method can achieve significant improvements in classification accuracies in comparison with several state-of-the-art algorithms. Numéro de notice : A2020-086 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2947081 Date de publication en ligne : 30/10/2019 En ligne : https://doi.org/10.1109/TGRS.2019.2947081 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94660
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 3 (March 2020) . - pp 1568 -1586[article]A novel MKL model of integrating LiDAR data and MSI for urban area classification / Yanfeng Gu in IEEE Transactions on geoscience and remote sensing, vol 53 n° 10 (October 2015)
[article]
Titre : A novel MKL model of integrating LiDAR data and MSI for urban area classification Type de document : Article/Communication Auteurs : Yanfeng Gu, Auteur ; Qingwang Wang, Auteur ; Xiuping Jia, Auteur ; Jón Alti, Auteur Année de publication : 2015 Article en page(s) : pp 5312 - 5326 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] apprentissage automatique
[Termes IGN] classificateur
[Termes IGN] classification à base de connaissances
[Termes IGN] classification automatique
[Termes IGN] données lidar
[Termes IGN] image multibande
[Termes IGN] image spectrale
[Termes IGN] milieu urbainRésumé : (Auteur) A novel multiple-kernel learning (MKL) model is proposed for urban classification to integrate heterogeneous features (HF-MKL) from two data sources, i.e., spectral images and LiDAR data. The features include spectral, spatial, and elevation attributes of urban objects from the two data sources. With these heterogeneous features (HFs), the new MKL model is designed to carry out feature fusion that is embedded in classification. First, Gaussian kernels with different bandwidths are used to measure the similarity of samples on each feature at different scales. Then, these multiscale kernels with different features are integrated using a linear combination. In the combination, the weights of the kernels with different features are determined by finding a projection based on the maximum variance. This way, the discriminative ability of the HFs is exploited at different scales and is also integrated to generate an optimal combined kernel. Finally, the optimization of the conventional support vector machine with this kernel is performed to construct a more effective classifier. Experiments are conducted on two real data sets, and the experimental results show that the HF-MKL model achieves the best performance in terms of classification accuracies in integrating the HFs for classification when compared with several state-of-the-art algorithms. Numéro de notice : A2015-752 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2015.2421051 Date de publication en ligne : 07/05/2015 En ligne : https://doi.org/10.1109/TGRS.2015.2421051 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=78742
in IEEE Transactions on geoscience and remote sensing > vol 53 n° 10 (October 2015) . - pp 5312 - 5326[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-2015101 SL Revue Centre de documentation Revues en salle Disponible