Détail de l'auteur
Auteur Hongyan Zhang |
Documents disponibles écrits par cet auteur (4)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Total variation regularized reweighted sparse nonnegative matrix factorization for hyperspectral unmixing / Wei He in IEEE Transactions on geoscience and remote sensing, vol 55 n° 7 (July 2017)
[article]
Titre : Total variation regularized reweighted sparse nonnegative matrix factorization for hyperspectral unmixing Type de document : Article/Communication Auteurs : Wei He, Auteur ; Hongyan Zhang, Auteur ; Liangpei Zhang, Auteur Année de publication : 2017 Article en page(s) : pp 3909 - 3921 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse des mélanges spectraux
[Termes IGN] factorisation de matrice non-négative
[Termes IGN] image hyperspectrale
[Termes IGN] pondérationRésumé : (Auteur) Blind hyperspectral unmixing (HU), which includes the estimation of endmembers and their corresponding fractional abundances, is an important task for hyperspectral analysis. Recently, nonnegative matrix factorization (NMF) and its extensions have been widely used in HU. Unfortunately, most of the NMF-based methods can easily lead to an unsuitable solution, due to the nonconvexity of the NMF model and the influence of noise. To overcome this limitation, we make the best use of the structure of the abundance maps, and propose a new blind HU method named total variation regularized reweighted sparse NMF (TV-RSNMF). First, the abundance matrix is assumed to be sparse, and a weighted sparse regularizer is incorporated into the NMF model. The weights of the weighted sparse regularizer are adaptively updated related to the abundance matrix. Second, the abundance map corresponding to a single fixed endmember should be piecewise smooth. Therefore, the TV regularizer is adopted to capture the piecewise smooth structure of each abundance map. In our multiplicative iterative solution to the proposed TV-RSNMF model, the TV regularizer can be regarded as an abundance map denoising procedure, which improves the robustness of TV-RSNMF to noise. A number of experiments were conducted in both simulated and real-data conditions to illustrate the advantage of the proposed TV-RSNMF method for blind HU. Numéro de notice : A2017-490 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2017.2683719 En ligne : http://dx.doi.org/10.1109/TGRS.2017.2683719 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=86417
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 7 (July 2017) . - pp 3909 - 3921[article]Total-variation-regularized low-rank matrix factorization for hyperspectral image restoration / Wei He in IEEE Transactions on geoscience and remote sensing, vol 54 n° 1 (January 2016)
[article]
Titre : Total-variation-regularized low-rank matrix factorization for hyperspectral image restoration Type de document : Article/Communication Auteurs : Wei He, Auteur ; Hongyan Zhang, Auteur ; Liangpei Zhang, Auteur ; Huanfeng Shen, Auteur Année de publication : 2016 Article en page(s) : pp 178 - 188 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] factorisation
[Termes IGN] factorisation de matrice non-négative
[Termes IGN] image hyperspectrale
[Termes IGN] matrice
[Termes IGN] restauration d'imageRésumé : (Auteur) In this paper, we present a spatial spectral hyperspectral image (HSI) mixed-noise removal method named total variation (TV)-regularized low-rank matrix factorization (LRTV). In general, HSIs are not only assumed to lie in a low-rank subspace from the spectral perspective but also assumed to be piecewise smooth in the spatial dimension. The proposed method integrates the nuclear norm, TV regularization, and L1-norm together in a unified framework. The nuclear norm is used to exploit the spectral low-rank property, and the TV regularization is adopted to explore the spatial piecewise smooth structure of the HSI. At the same time, the sparse noise, which includes stripes, impulse noise, and dead pixels, is detected by the L1-norm regularization. To tradeoff the nuclear norm and TV regularization and to further remove the Gaussian noise of the HSI, we also restrict the rank of the clean image to be no larger than the number of endmembers. A number of experiments were conducted in both simulated and real data conditions to illustrate the performance of the proposed LRTV method for HSI restoration. Numéro de notice : A2016-071 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2015.2452812 En ligne : https://doi.org/10.1109/TGRS.2015.2452812 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=79834
in IEEE Transactions on geoscience and remote sensing > vol 54 n° 1 (January 2016) . - pp 178 - 188[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-2016011 SL Revue Centre de documentation Revues en salle Disponible Urban classification by the fusion of thermal infrared hyperspectral and visible data / Jiayi Li in Photogrammetric Engineering & Remote Sensing, PERS, vol 81 n° 12 (December 2015)
[article]
Titre : Urban classification by the fusion of thermal infrared hyperspectral and visible data Type de document : Article/Communication Auteurs : Jiayi Li, Auteur ; Hongyan Zhang, Auteur ; Min Guo, Auteur ; et al., Auteur Année de publication : 2015 Article en page(s) : pp 901 - 911 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse d'image numérique
[Termes IGN] bande spectrale
[Termes IGN] bande visible
[Termes IGN] classification dirigée
[Termes IGN] fusion de données
[Termes IGN] image hyperspectrale
[Termes IGN] image thermique
[Termes IGN] occupation du solRésumé : (auteur) The 2014 Data Fusion Contest, organized by the Image Analysis and Data Fusion (IADF) Technical Committee of the IEEE Geoscience and Remote Sensing Society, involved two datasets acquired at different spectral ranges and spatial resolutions: a coarser-resolution long-wave infrared (LWIR, thermal infrared) hyperspectral data set and fine-resolution data acquired in the visible (VIS) wavelength range. In this article, a novel multi-level fusion approach is proposed to fully utilize the characteristics of these two different datasets to achieve improved urban land-use and land-cover classification. Specifically, road extraction by fusing the classification result of the TI-HSI dataset and the segmentation result of the VIS dataset is first proposed. Thereafter, a novel gap inpainting method for the VIS data with the guidance of the TI-HSI data is presented to deal with the swath width inconsistency, and to facilitate an accurate spatial feature extraction step. The experimental results with the 2014 Data Fusion Contest datasets suggest that the proposed method can alleviate the multi-spectral-spatial resolution and multi-swath width problem to a great extent, and achieve an improved urban classification accuracy. Numéro de notice : A2015-990 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.14358/PERS.81.12.901 En ligne : https://doi.org/10.14358/PERS.81.12.901 Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=80271
in Photogrammetric Engineering & Remote Sensing, PERS > vol 81 n° 12 (December 2015) . - pp 901 - 911[article]Efficient superpixel-level multitask joint sparse representation for hyperspectral image classification / Jiayi Li in IEEE Transactions on geoscience and remote sensing, vol 53 n° 10 (October 2015)
[article]
Titre : Efficient superpixel-level multitask joint sparse representation for hyperspectral image classification Type de document : Article/Communication Auteurs : Jiayi Li, Auteur ; Hongyan Zhang, Auteur ; Liangpei Zhang, Auteur Année de publication : 2015 Article en page(s) : pp 5338 - 5351 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse infrapixellaire
[Termes IGN] apprentissage automatique
[Termes IGN] classification
[Termes IGN] données clairsemées
[Termes IGN] image hyperspectrale
[Termes IGN] représentation des donnéesRésumé : (Auteur) In this paper, we propose a superpixel-level sparse representation classification framework with multitask learning for hyperspectral imagery. The proposed algorithm exploits the class-level sparsity prior for multiple-feature fusion, and the correlation and distinctiveness of pixels in a spatial local region. Compared with some of the state-of-the-art hyperspectral classifiers, the superiority of the multiple-feature combination, the spatial prior utilization, and the computational complexity are maintained at the same time in the proposed method. The proposed classification algorithm was tested on three hyperspectral images. The experimental results suggest that the proposed algorithm performs better than the other sparse (collaborative) representation-based algorithms and some popular hyperspectral multiple-feature classifiers. Numéro de notice : A2015-749 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2015.2421638 Date de publication en ligne : 29/04/2015 En ligne : https://doi.org/10.1109/TGRS.2015.2421638 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=78758
in IEEE Transactions on geoscience and remote sensing > vol 53 n° 10 (October 2015) . - pp 5338 - 5351[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-2015101 SL Revue Centre de documentation Revues en salle Disponible