Détail de l'auteur
Auteur Caleb M. DeChant |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Improving soil moisture profile prediction with the particle Filter-Markov chain Monte Carlo method / Hongxiang Yan in IEEE Transactions on geoscience and remote sensing, vol 53 n° 11 (November 2015)
[article]
Titre : Improving soil moisture profile prediction with the particle Filter-Markov chain Monte Carlo method Type de document : Article/Communication Auteurs : Hongxiang Yan, Auteur ; Caleb M. DeChant, Auteur ; Hamid Moradkhani, Auteur Année de publication : 2015 Article en page(s) : pp 6134 - 6147 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] humidité du sol
[Termes IGN] image Aqua-AMSR
[Termes IGN] méthode de Monte-Carlo par chaînes de MarkovRésumé : (Auteur) Satellite soil moisture estimates have received increasing attention over the past decade. This paper examines the applicability of estimating soil moisture states and soil hydraulic parameters through two particle filter (PF) methods: The PF with commonly used sampling importance resampling (PF-SIR) and the PF with recently developed Markov chain Monte Carlo sampling (PF-MCMC) methods. In a synthetic experiment, the potential of assimilating remotely sensed near-surface soil moisture measurements into a 1-D mechanistic soil water model (HYDRUS-1D) using both the PF-SIR and PF-MCMC algorithms is analyzed. The effects of satellite temporal resolution and accuracy, soil type, and ensemble size on the assimilation of soil moisture are analyzed. In a real data experiment, we first validate the Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) soil moisture products in the Oklahoma Little Washita Watershed. Aside from rescaling the remotely sensed soil moisture, a bias correction algorithm is implemented to correct the deep soil moisture estimate. Both the ascending and descending AMSR-E soil moisture data are assimilated into the HYDRUS-1D model. The synthetic assimilation results indicated that, whereas both updating schemes showed the ability to correct the soil moisture state and estimate hydraulic parameters, the PF-MCMC scheme is consistently more accurate than PR-SIR. For real data case, the quality of remotely sensed soil moisture impacts the benefits of their assimilation into the model. The PF-MCMC scheme brought marginal gains than the open-loop simulation in RMSE at both surface and root-zone soil layer, whereas the PF-SIR scheme degraded the open-loop simulation. Numéro de notice : A2015-777 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2015.2432067 Date de publication en ligne : 02/06/2015 En ligne : https://doi.org/10.1109/TGRS.2015.2432067 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=78883
in IEEE Transactions on geoscience and remote sensing > vol 53 n° 11 (November 2015) . - pp 6134 - 6147[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-2015111 SL Revue Centre de documentation Revues en salle Disponible