Détail de l'auteur
Auteur Xing Li |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
A Bayesian network-based method to alleviate the ill-posed inverse problem: A case study on leaf area index and canopy water content retrieval / Xingwen Quan in IEEE Transactions on geoscience and remote sensing, vol 53 n° 12 (December 2015)
[article]
Titre : A Bayesian network-based method to alleviate the ill-posed inverse problem: A case study on leaf area index and canopy water content retrieval Type de document : Article/Communication Auteurs : Xingwen Quan, Auteur ; Binbin He, Auteur ; Xing Li, Auteur Année de publication : 2015 Article en page(s) : pp 6507 - 6517 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] appariement d'images
[Termes IGN] image Landsat-8
[Termes IGN] Leaf Area Index
[Termes IGN] probabilité
[Termes IGN] problème inverse
[Termes IGN] réseau bayesien
[Termes IGN] teneur en eau de la végétationRésumé : (auteur) Retrieval of vegetation parameters from remotely sensed data using a radiative transfer model is generally hampered by the ill-posed inverse problem, which dramatically decreases the precision level of retrieved parameters. The purpose of this study was to use a Bayesian network-based method to allow the alleviation of the ill-posed inverse problem. This was achieved by introducing the correlations between the model free parameters into their prior joint probability distribution (PJPD), allowing the reduction of the probabilities of unrealistic combinations. Three sampling strategies intended to design three types of PJPDs that considered different correlations (represented by a correlation matrix) were presented. They were multivariate uniform distribution composed by independent free parameters, multivariate uniform distribution based on a simple correlation matrix, and multivariate Gaussian distribution based on a complicated correlation matrix, respectively. A case study of the presented method to retrieve leaf area index (LAI) and canopy water content (CWC) using the PROSAIL_5B (PROSPECT-5 + 4SAIL) model from Landsat 8 products was implemented. Results indicate that the presented method greatly improves the precision level of target parameters, with the coefficient of determination R2 of 0.69, 0.77, and 0.82 and root-mean-square error (RMSE) of 0.55, 0.51, and 0.44 m2 · m-2 for LAI and R2 = 0.68, 0.78, and 0.84 and RMSE = 230, 198, and 166 g · m-2 for CWC, respectively. Hence, the ill-posed inverse problem can be alleviated by the presented method, which can be widely applied for vegetation parameters retrieval. Numéro de notice : A2015-838 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2015.2442999 Date de publication en ligne : 30/06/2015 En ligne : https://doi.org/10.1109/TGRS.2015.2442999 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=79172
in IEEE Transactions on geoscience and remote sensing > vol 53 n° 12 (December 2015) . - pp 6507 - 6517[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-2015121 SL Revue Centre de documentation Revues en salle Disponible