Détail de l'auteur
Auteur Hongzhou Wang |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Fusion of waveform LiDAR data and hyperspectral imagery for land cover classification / Hongzhou Wang in ISPRS Journal of photogrammetry and remote sensing, vol 108 (October 2015)
[article]
Titre : Fusion of waveform LiDAR data and hyperspectral imagery for land cover classification Type de document : Article/Communication Auteurs : Hongzhou Wang, Auteur ; Craig L. Glennie, Auteur Année de publication : 2015 Article en page(s) : pp 1 - 11 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] classification par maximum de vraisemblance
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] données lidar
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] forme d'onde pleine
[Termes IGN] fusion d'images
[Termes IGN] fusion de données
[Termes IGN] image hyperspectrale
[Termes IGN] occupation du sol
[Termes IGN] onde lidar
[Termes IGN] semis de points
[Termes IGN] superposition d'images
[Termes IGN] voxelRésumé : (auteur) Current research into the fusion of hyperspectral imagery (HI) and full waveform LiDAR (Light Detection And Ranging) has relied on first processing the full waveform LiDAR (FWL) data to a set of discrete returns before merging because the data structure and sampling interval of HI and FWL are distinctly different. However, additional information about target properties can potentially be recovered if the waveform shape is preserved in the fusion process. This paper proposes a “voxelization” method to register FWL data to HI by dividing the waveform data into voxels, and then synthesizing all waveforms which intersect a voxel column into one three-dimensional superposition waveform: the synthesized waveform (SWF). A vertical energy distribution coefficients (VEDC) feature is proposed for extracting features from SWF, and then the SWF and HI are fused to form a complete feature space for classification. A pairwise classifier was adapted and completed using both Maximum Likelihood and Support Vector Machine classifiers for the combined SWF/HI features. Results show that this method of generating SWF from FWL data can effectively preserve information from the original waveforms, and the fusion of SWF and HI enhanced land cover classification compared to both using either data set alone or the merging of HI with a discrete LiDAR return point cloud. Numéro de notice : A2015-848 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2015.05.012 Date de publication en ligne : 23/06/2015 En ligne : http://dx.doi.org/10.1016/j.isprsjprs.2015.05.012 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=79218
in ISPRS Journal of photogrammetry and remote sensing > vol 108 (October 2015) . - pp 1 - 11[article]