Détail de l'auteur
Auteur Yue Zhang |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Stochastic geometrical model and Monte Carlo optimization methods for building reconstruction from InSAR data / Yue Zhang in ISPRS Journal of photogrammetry and remote sensing, vol 108 (October 2015)
[article]
Titre : Stochastic geometrical model and Monte Carlo optimization methods for building reconstruction from InSAR data Type de document : Article/Communication Auteurs : Yue Zhang, Auteur ; Xuan Sun, Auteur ; Antje Thiele, Auteur ; Stefan Hinz, Auteur Année de publication : 2015 Article en page(s) : pp 49 – 61 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] image radar moirée
[Termes IGN] image TanDEM-X
[Termes IGN] interféromètrie par radar à antenne synthétique
[Termes IGN] méthode de Monte-Carlo
[Termes IGN] modèle stochastique
[Termes IGN] optimisation (mathématiques)
[Termes IGN] reconstruction 3D du bâtiRésumé : (auteur) Synthetic aperture radar (SAR) systems, such as TanDEM-X, TerraSAR-X and Cosmo-SkyMed, acquire imagery with high spatial resolution (HR), making it possible to observe objects in urban areas with high detail. In this paper, we propose a new top-down framework for three-dimensional (3D) building reconstruction from HR interferometric SAR (InSAR) data. Unlike most methods proposed before, we adopt a generative model and utilize the reconstruction process by maximizing a posteriori estimation (MAP) through Monte Carlo methods. The reason for this strategy refers to the fact that the noisiness of SAR images calls for a thorough prior model to better cope with the inherent amplitude and phase fluctuations.
In the reconstruction process, according to the radar configuration and the building geometry, a 3D building hypothesis is mapped to the SAR image plane and decomposed to feature regions such as layover, corner line, and shadow. Then, the statistical properties of intensity, interferometric phase and coherence of each region are explored respectively, and are included as region terms. Roofs are not directly considered as they are mixed with wall into layover area in most cases. When estimating the similarity between the building hypothesis and the real data, the prior, the region term, together with the edge term related to the contours of layover and corner line, are taken into consideration. In the optimization step, in order to achieve convergent reconstruction outputs and get rid of local extrema, special transition kernels are designed. The proposed framework is evaluated on the TanDEM-X dataset and performs well for buildings reconstruction.Numéro de notice : A2015-851 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2015.06.004 En ligne : http://dx.doi.org/10.1016/j.isprsjprs.2015.06.004 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=79221
in ISPRS Journal of photogrammetry and remote sensing > vol 108 (October 2015) . - pp 49 – 61[article]