Détail de l'auteur
Auteur Ulrich Meyer |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Combination of GRACE monthly gravity fields on the normal equation level / Ulrich Meyer in Journal of geodesy, vol 93 n° 9 (September 2019)
[article]
Titre : Combination of GRACE monthly gravity fields on the normal equation level Type de document : Article/Communication Auteurs : Ulrich Meyer, Auteur ; Yoomin Jean, Auteur ; A. Kvas, Auteur ; et al., Auteur Année de publication : 2019 Article en page(s) : pp 1645 - 1658 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes IGN] analyse de variance
[Termes IGN] champ de pesanteur terrestre
[Termes IGN] données GRACE
[Termes IGN] filtrage du bruit
[Termes IGN] gravimétrie spatiale
[Termes IGN] mesure de la qualité
[Termes IGN] série temporelleRésumé : (Auteur) A large number of time-series of monthly gravity fields derived from GRACE data provide users with a wealth of information on mass transport processes in the system Earth. The users are, however, left alone with the decision which time-series to analyze. Following the example of other well-known combination services provided by the geodetic community, the prototype of a combination service has been developed within the frame of the project EGSIEM (2015–2017) to combine the different time-series with the goal to provide a unique and superior product to the user community. Four associated analysis centers (ACs) of EGSIEM, namely AIUB, GFZ, GRGS and IfG, generated monthly gravity fields which were then combined using the different normal equations (NEQs). But the relative weights determined by variance component estimation (VCE) on the NEQ level do not lead to an optimal combined product due to the different processing strategies applied by the individual ACs. We therefore resort to VCE on the solution level to derive relative weights that are representative of the noise levels of the individual solutions. These weights are then applied in the combination on the NEQ level. Prior to combination, empirical scaling factors that are based on pairwise combinations of NEQs are derived to balance the impact of the NEQs on the combined solution. We compare the processing approaches of the different ACs and introduce quality measures derived either from the differences w.r.t. the monthly means of the individual gravity fields or w.r.t. a deterministic signal model. After combination, the gravity fields are validated by comparison to the official GRACE SDS RL05 time-series and the individual contributions of the associated ACs in the spectral and the spatial domain. While the combined gravity fields are comparable in signal strength to the individual time-series, they stand out by their low noise level. In terms of noise, they are in 90% of all months as good or better than the best individual contribution from IfG and significantly less noisy than the official GRACE SDS RL05 time-series. Numéro de notice : A2019-507 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-019-01274-6 Date de publication en ligne : 02/07/2019 En ligne : https://doi.org/10.1007/s00190-019-01274-6 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93792
in Journal of geodesy > vol 93 n° 9 (September 2019) . - pp 1645 - 1658[article]Time variable Earth’s gravity field from SLR satellites / Krzysztof Sosnica in Journal of geodesy, vol 89 n° 10 (october 2015)
[article]
Titre : Time variable Earth’s gravity field from SLR satellites Type de document : Article/Communication Auteurs : Krzysztof Sosnica, Auteur ; Adrian Jäggi, Auteur ; Ulrich Meyer, Auteur ; et al., Auteur Année de publication : 2015 Article en page(s) : pp 945 - 960 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes IGN] analyse comparative
[Termes IGN] champ de pesanteur terrestre
[Termes IGN] données GRACE
[Termes IGN] masse d'air
[Termes IGN] masse d'eau
[Termes IGN] masse de la TerreRésumé : (auteur) The time variable Earth’s gravity field contains information about the mass transport within the system Earth, i.e., the relationship between mass variations in the atmosphere, oceans, land hydrology, and ice sheets. For many years, satellite laser ranging (SLR) observations to geodetic satellites have provided valuable information of the low-degree coefficients of the Earth’s gravity field. Today, the Gravity Recovery and Climate Experiment (GRACE) mission is the major source of information for the time variable field of a high spatial resolution. We recover the low-degree coefficients of the time variable Earth’s gravity field using SLR observations up to nine geodetic satellites: LAGEOS-1, LAGEOS-2, Starlette, Stella, AJISAI, LARES, Larets, BLITS, and Beacon-C. We estimate monthly gravity field coefficients up to degree and order 10/10 for the time span 2003–2013 and we compare the results with the GRACE-derived gravity field coefficients. We show that not only degree-2 gravity field coefficients can be well determined from SLR, but also other coefficients up to degree 10 using the combination of short 1-day arcs for low orbiting satellites and 10-day arcs for LAGEOS-1/2. In this way, LAGEOS-1/2 allow recovering zonal terms, which are associated with long-term satellite orbit perturbations, whereas the tesseral and sectorial terms benefit most from low orbiting satellites, whose orbit modeling deficiencies are minimized due to short 1-day arcs. The amplitudes of the annual signal in the low-degree gravity field coefficients derived from SLR agree with GRACE K-band results at a level of 77 %. This implies that SLR has a great potential to fill the gap between the current GRACE and the future GRACE Follow-On mission for recovering of the seasonal variations and secular trends of the longest wavelengths in gravity field, which are associated with the large-scale mass transport in the system Earth. Numéro de notice : A2015-878 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-015-0825-1 En ligne : https://doi.org/10.1007/s00190-015-0825-1 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=79410
in Journal of geodesy > vol 89 n° 10 (october 2015) . - pp 945 - 960[article]