Détail de l'auteur
Auteur Mattia Marconcini |
Documents disponibles écrits par cet auteur (3)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Semi-supervised SVM for individual tree crown species classification / Michele Dalponte in ISPRS Journal of photogrammetry and remote sensing, vol 110 (December 2015)
[article]
Titre : Semi-supervised SVM for individual tree crown species classification Type de document : Article/Communication Auteurs : Michele Dalponte, Auteur ; Levi Theodor Ene, Auteur ; Mattia Marconcini, Auteur ; et al., Auteur Année de publication : 2015 Article en page(s) : pp 77 – 87 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification dirigée
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] données laser
[Termes IGN] forêt boréale
[Termes IGN] image hyperspectrale
[Termes IGN] inventaire forestier localRésumé : (auteur) In this paper a novel semi-supervised SVM classifier is presented, specifically developed for tree species classification at individual tree crown (ITC) level. In ITC tree species classification, all the pixels belonging to an ITC should have the same label. This assumption is used in the learning of the proposed semi-supervised SVM classifier (ITC-S3VM). This method exploits the information contained in the unlabeled ITC samples in order to improve the classification accuracy of a standard SVM. The ITC-S3VM method can be easily implemented using freely available software libraries. The datasets used in this study include hyperspectral imagery and laser scanning data acquired over two boreal forest areas characterized by the presence of three information classes (Pine, Spruce, and Broadleaves). The experimental results quantify the effectiveness of the proposed approach, which provides classification accuracies significantly higher (from 2% to above 27%) than those obtained by the standard supervised SVM and by a state-of-the-art semi-supervised SVM (S3VM). Particularly, by reducing the number of training samples (i.e. from 100% to 25%, and from 100% to 5% for the two datasets, respectively) the proposed method still exhibits results comparable to the ones of a supervised SVM trained with the full available training set. This property of the method makes it particularly suitable for practical forest inventory applications in which collection of in situ information can be very expensive both in terms of cost and time. Numéro de notice : A2015-894 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2015.10.010 En ligne : http://dx.doi.org/10.1016/j.isprsjprs.2015.10.010 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=79445
in ISPRS Journal of photogrammetry and remote sensing > vol 110 (December 2015) . - pp 77 – 87[article]A novel transductive SVM for semisupervised classification of remote-sensing images / Lorenzo Bruzzone in IEEE Transactions on geoscience and remote sensing, vol 44 n° 11 Tome 2 (November 2006)
[article]
Titre : A novel transductive SVM for semisupervised classification of remote-sensing images Type de document : Article/Communication Auteurs : Lorenzo Bruzzone, Auteur ; M. Chi, Auteur ; Mattia Marconcini, Auteur Année de publication : 2006 Article en page(s) : pp 3363 - 3373 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] apprentissage dirigé
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] classification semi-dirigée
[Termes IGN] reconnaissance automatiqueRésumé : (Auteur) This paper introduces a semisupervised classification method that exploits both labeled and unlabeled samples for addressing ill-posed problems with support vector machines (SVMs). The method is based on recent developments in statistical learning theory concerning transductive inference and in particular transductive SVMs (TSVMs). TSVMs exploit specific iterative algorithms which gradually search a reliable separating hyperplane (in the kernel space) with a transductive process that incorporates both labeled and unlabeled samples in the training phase. Based on an analysis of the properties of the TSVMs presented in the literature, a novel modified TSVM classifier designed for addressing ill-posed remote-sensing problems is proposed. In particular, the proposed technique: 1) is based on a novel transductive procedure that exploits a weighting strategy for unlabeled patterns, based on a time-dependent criterion; 2) is able to mitigate the effects of suboptimal model selection (which is unavoidable in the presence of small-size training sets); and 3) can address multiclass cases. Experimental results confirm the effectiveness of the proposed method on a set of ill-posed remote-sensing classification problems representing different operative conditions. Copyright IEEE Numéro de notice : A2006-527 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2006.877950 En ligne : https://doi.org/10.1109/TGRS.2006.877950 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=28250
in IEEE Transactions on geoscience and remote sensing > vol 44 n° 11 Tome 2 (November 2006) . - pp 3363 - 3373[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-06111B RAB Revue Centre de documentation En réserve L003 Disponible An advanced system for the automatic classification of multitemporal SAR images / Lorenzo Bruzzone in IEEE Transactions on geoscience and remote sensing, vol 42 n° 6 (June 2004)
[article]
Titre : An advanced system for the automatic classification of multitemporal SAR images Type de document : Article/Communication Auteurs : Lorenzo Bruzzone, Auteur ; Mattia Marconcini, Auteur ; et al., Auteur Année de publication : 2004 Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] classification automatique
[Termes IGN] classification par réseau neuronal
[Termes IGN] coefficient de rétrodiffusion
[Termes IGN] extraction automatique
[Termes IGN] image ERS-SAR
[Termes IGN] image multitemporelle
[Termes IGN] reconnaissance de formesRésumé : (Auteur) A novel system for the classification of multitemporal synthetic aperture radar (SAR) images is presented. It has been developed by integrating an analysis of the multitemporal SAR signal physics with a pattern recognition approach. The system is made up of a feature-extraction module and a neural-network classifier, as well as a set of standard preprocessing procedures. The feature-extraction module derives a set of features from a series of multitemporal SAR images. These features are based on the concepts of long-term coherence and backscattering temporal variability and have been defined according to an analysis of the multitemporal SAR signal behavior in the presence of different land-cover classes. The neural-network classifier (which is based on a radial basis function neural architecture) properly exploits the multitemporal features for producing accurate land-cover maps. Thanks to the effectiveness of the extracted features, the number of measures that can be provided as input to the classifier is significantly smaller than the number of available multitemporal images. This reduces the complexity of the neural architecture (and consequently increases the generalization capabilities of the classifier) and relaxes the requirements relating to the number of training patterns to be used for classifier learning. Experimental results (obtained on a multitemporal series of European Remote Sensing 1 satellite SAR images) confirm the effectiveness of the proposed system, which exhibits both high classification accuracy and good stability versus parameter settings. These results also point out that properly integrating a pattern recognition procedure (based on machine learning) with an accurate feature extraction phase (based on the SAR sensor physics understanding) represents an effective approach to SAR data analysis. Numéro de notice : A2004-264 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2004.826821 En ligne : https://doi.org/10.1109/TGRS.2004.826821 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=26791
in IEEE Transactions on geoscience and remote sensing > vol 42 n° 6 (June 2004)[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-04061 RAB Revue Centre de documentation En réserve L003 Disponible