Détail de l'auteur
Auteur Alireza Sharifi |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Assessing spatio-temporal mapping and monitoring of climatic variability using SPEI and RF machine learning models / Saadia Sultan Wahlaa in Geocarto international, vol 37 n° 27 ([20/12/2022])
[article]
Titre : Assessing spatio-temporal mapping and monitoring of climatic variability using SPEI and RF machine learning models Type de document : Article/Communication Auteurs : Saadia Sultan Wahlaa, Auteur ; Jamil Hasan Kazmi, Auteur ; Alireza Sharifi, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] apprentissage automatique
[Termes IGN] changement climatique
[Termes IGN] classification par arbre de décision
[Termes IGN] évapotranspiration
[Termes IGN] Indice de précipitations antérieures
[Termes IGN] modèle de simulation
[Termes IGN] Pakistan
[Termes IGN] prévision météorologique
[Termes IGN] sécheresseRésumé : (auteur) Droughts may inflict significant damage to agricultural and water supplies, resulting in substantial financial losses as well as the death of people and livestock. This study intends to anticipate droughts by studying the changes of an acceptable index using appropriate climatic factors. This study was divided into three phases, first being the determination of the Standardized Precipitation Evapotranspiration (SPEI) index for the Cholistan, Punjab, Pakistan area based on a dataset spanning 1980 to 2020. The indices are calculated at different monthly intervals which could to predict short-term periods for the Cholistan in Pakistan, we selected two distinctive time periods of one month (SPEI–1) and three months (SPEI–3). The second phase involved dividing the data into three sample sizes, which were used for training data from 1980 to 2010, testing data from 2011 to 2015 and validation data from 2016 to 2020. The utilization of the random forest (RF) algorithm to train and evaluate the data using a variety of climate variables e.g. potential evapotranspiration, rainfall, vapor pressure cloud cover, and mean, minimum and maximum, temperature. The final phase was to analyze the performance of the model based on statistical metrics and drought classes. Based on these considerations, statistical measures, such as the Coefficient of Determination (R2) and the Root Mean Square Error (RMSE) approach, were used to evaluate the performance of the test group throughout the testing period. The model's performance revealed the satisfactory results with R2 values of 0.80 and 0.78, for SPEI–1 and SPEI–3 situations, respectively. Following the data analysis, it was discovered that the validation period had a receiving operating curve and area under the Curve (ROC-AUC) of 0.87 for the SPEI–1 case and 0.85 for the SPEI–3 case. In this context, the results indicate that the SPEI may be useful as a prediction tool for drought prediction and the performances the RF model was suitable for both timescales. However, a more rigorous analysis with a larger dataset or a combination of datasets from different areas might be more beneficial for generalization over more extended time periods provide additional insights. Numéro de notice : A2022-934 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2022.2093411 Date de publication en ligne : 30/06/2022 En ligne : https://doi.org/10.1080/10106049.2022.2093411 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102672
in Geocarto international > vol 37 n° 27 [20/12/2022] . - pp[article]Estimation of forest biomass using multivariate relevance vector regression / Alireza Sharifi in Photogrammetric Engineering & Remote Sensing, PERS, vol 82 n° 1 (January 2016)
[article]
Titre : Estimation of forest biomass using multivariate relevance vector regression Type de document : Article/Communication Auteurs : Alireza Sharifi, Auteur ; Jalal Amini, Auteur ; Ryutaro Tateishi, Auteur Année de publication : 2016 Article en page(s) : pp 41 - 49 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] biomasse aérienne
[Termes IGN] biomasse forestière
[Termes IGN] estimation statistique
[Termes IGN] forêt
[Termes IGN] image ALOS-PALSAR
[Termes IGN] Iran
[Termes IGN] Perceptron multicouche
[Termes IGN] régression multiple
[Termes IGN] séparateur à vaste marge
[Vedettes matières IGN] Inventaire forestierRésumé : (auteur) The objective of this study is to develop a method based on multivariate relevance vector regression (MVRVR) as a kernelbased Bayesian model for the estimation of above-ground biomass (AGB) in the Hyrcanian forests of Iran. Field AGB data from the Hyrcanian forests and multi-temporal PALSAR backscatter values are used for training and testing the methods. The results of the MVRVR method are then compared with other methods: multivariate linear regression (MLR), multilayer perceptron neural network (MLPNN), and support vector regression (SVR). The MLR model showed lower values of R2 than the three other approaches. Although the SVR model was found to be more accurate than MLPNN, it had the lowest saturation point of 224.75 Mg/ha. The use of MVRVR model significantly improves the estimation of AGB (R2 = 0.90; RMSE = 32.05 Mg/ha), and the model showed a superior performance in estimating AGB with the highest saturation point (297.81 Mg/ha). Numéro de notice : A2016-053 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article DOI : 10.14358/PERS.83.1.41 En ligne : https://doi.org/10.14358/PERS.83.1.41 Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=79654
in Photogrammetric Engineering & Remote Sensing, PERS > vol 82 n° 1 (January 2016) . - pp 41 - 49[article]