Détail de l'auteur
Auteur Ting Lu |
Documents disponibles écrits par cet auteur (3)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Subpixel-pixel-superpixel-based multiview active learning for hyperspectral images classification / Yu Li in IEEE Transactions on geoscience and remote sensing, vol 58 n° 7 (July 2020)
[article]
Titre : Subpixel-pixel-superpixel-based multiview active learning for hyperspectral images classification Type de document : Article/Communication Auteurs : Yu Li, Auteur ; Ting Lu, Auteur ; Shutao Li, Auteur Année de publication : 2020 Article en page(s) : pp 4976 - 4988 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] algorithme d'apprentissage
[Termes IGN] analyse infrapixellaire
[Termes IGN] apprentissage semi-dirigé
[Termes IGN] classification pixellaire
[Termes IGN] échantillonnage
[Termes IGN] image hyperspectrale
[Termes IGN] image multiple
[Termes IGN] segmentation sémantique
[Termes IGN] superpixelRésumé : (auteur) Active learning (AL) attempts to actively select the most representative or useful training samples in an iterative manner. The aim is to simultaneously improve the classification performance and reduce the manual labeling effort. In this article, a novel subpixel-pixel-superpixel-based multiview AL (MAL) (SPS-MAL) method is proposed for hyperspectral image (HSI) classification. Here, the multiple views are generated via extracting the subpixel-level, pixel-level, and superpixel-level information. The multiple views can reflect various characteristics of HSI, i.e., spectral mixture, spectral discrimination, and spectral–spatial structure. Therefore, the joint use of diverse and complementary information in multiple views will contribute to a better identification ability of different classes. In addition, a coarse-to-fine MAL algorithm is introduced to effectively select the most representative samples with the most uncertainty. Specifically, a disagreement analysis on multiple views and joint posterior probability estimation is used to query unlabeled samples. Along with the expansion of training samples, view-specific confidence scores are estimated to adaptively integrate the classification results of multiple views, according to their discrimination performance. In this way, the classification accuracy will be further boosted while the number of necessary training samples can be significantly reduced. The experimental classification results on three well-known HSIs demonstrate the effectiveness of the proposed SPS-MAL method. Numéro de notice : A2020-392 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2971081 Date de publication en ligne : 14/02/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2971081 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95388
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 7 (July 2020) . - pp 4976 - 4988[article]From subpixel to superpixel : a novel fusion framework for hyperspectral image classification / Ting Lu in IEEE Transactions on geoscience and remote sensing, vol 55 n° 8 (August 2017)
[article]
Titre : From subpixel to superpixel : a novel fusion framework for hyperspectral image classification Type de document : Article/Communication Auteurs : Ting Lu, Auteur ; Shutao Li, Auteur ; Leyuan Fang, Auteur ; et al., Auteur Année de publication : 2017 Article en page(s) : pp 4398 - 4411 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse des mélanges spectraux
[Termes IGN] analyse infrapixellaire
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] classification pixellaire
[Termes IGN] combinaison linéaire
[Termes IGN] fusion d'images
[Termes IGN] image hyperspectrale
[Termes IGN] méthode fondée sur le noyauRésumé : (Auteur) Supervised classification of hyperspectral images (HSI) is a very challenging task due to the existence of noisy and mixed spectral characteristics. Recently, the widely developed spectral unmixing techniques offer the possibility to extract spectral mixture information at a subpixel level, which can contribute to the categorization of seriously mixed spectral pixels. Besides, it has been demonstrated that the discrimination between different materials will be improved by integrating the geometry and structure information, which can be derived from the variance between neighboring pixels. Furthermore, by incorporating the spatial context, the superpixel-based spectral-spatial similarity information can be used to smooth classification results in homogeneous regions. Therefore, a novel fusion framework for HSI classification that combines subpixel, pixel, and superpixel-based complementary information is proposed in this paper. Here, both feature fusion and decision fusion schemes are introduced. For the feature fusion scheme, the first step is to extract subpixel-level, pixel-level, and superpixel-level features from HSI, respectively. Then, the multiple feature-induced kernels are fused to form one composite kernel, which is incorporated with a support vector machine (SVM) classifier for label assignment. For the decision fusion scheme, class probabilities based on three different features are estimated by the probabilistic SVM classifier first. Then, the class probabilities are adaptively fused to form a probabilistic decision rule for classification. Experimental results tested on different real HSI images can demonstrate the effectiveness of the proposed fusion schemes in improving discrimination capability, when compared with the classification results relied on each individual feature. Numéro de notice : A2017-654 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2017.2691906 En ligne : http://dx.doi.org/10.1109/TGRS.2017.2691906 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=86439
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 8 (August 2017) . - pp 4398 - 4411[article]Spectral–spatial adaptive sparse representation for hyperspectral image denoising / Ting Lu in IEEE Transactions on geoscience and remote sensing, vol 54 n° 1 (January 2016)
[article]
Titre : Spectral–spatial adaptive sparse representation for hyperspectral image denoising Type de document : Article/Communication Auteurs : Ting Lu, Auteur ; Shutao Li, Auteur ; Leyuan Fang, Auteur ; et al., Auteur Année de publication : 2016 Article en page(s) : pp 373 - 385 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] appariement d'images
[Termes IGN] bruit blanc
[Termes IGN] filtrage du bruit
[Termes IGN] image hyperspectraleRésumé : (Auteur) In this paper, a novel spectral-spatial adaptive sparse representation (SSASR) method is proposed for hyperspectral image (HSI) denoising. The proposed SSASR method aims at improving noise-free estimation for noisy HSI by making full use of highly correlated spectral information and highly similar spatial information via sparse representation, which consists of the following three steps. First, according to spectral correlation across bands, the HSI is partitioned into several nonoverlapping band subsets. Each band subset contains multiple continuous bands with highly similar spectral characteristics. Then, within each band subset, shape-adaptive local regions consisting of spatially similar pixels are searched in spatial domain. This way, spectral-spatial similar pixels can be grouped. Finally, the highly correlated and similar spectral-spatial information in each group is effectively used via the joint sparse coding, in order to generate better noise-free estimation. The proposed SSASR method is evaluated by different objective metrics in both real and simulated experiments. The numerical and visual comparison results demonstrate the effectiveness and superiority of the proposed method. Numéro de notice : A2016-073 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2015.2457614 En ligne : https://doi.org/10.1109/TGRS.2015.2457614 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=79841
in IEEE Transactions on geoscience and remote sensing > vol 54 n° 1 (January 2016) . - pp 373 - 385[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-2016011 SL Revue Centre de documentation Revues en salle Disponible