Détail de l'auteur
Auteur Matthew Renner |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Global localization of autonomous robots in forest environments / Marwan Hussein in Photogrammetric Engineering & Remote Sensing, PERS, vol 81 n° 11 (November 2015)
[article]
Titre : Global localization of autonomous robots in forest environments Type de document : Article/Communication Auteurs : Marwan Hussein, Auteur ; Matthew Renner, Auteur ; Karl Iagnemma, Auteur Année de publication : 2015 Article en page(s) : pp 839 - 846 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Photogrammétrie numérique
[Termes IGN] données lidar
[Termes IGN] géopositionnement
[Termes IGN] lever mobile
[Termes IGN] navigation
[Termes IGN] précision métrique
[Termes IGN] robot mobile
[Termes IGN] télémétrie laser terrestreRésumé : (auteur) A method for the autonomous geolocation of ground vehicles in forest environments is presented. The method provides an estimate of the global horizontal position of a vehicle strictly based on finding a geometric match between a map of observed tree stems, scanned in 3D by Light Detection and Ranging (lidar) sensors onboard the vehicle, to another stem map generated from the structure of tree crowns analyzed from high resolution aerial orthoimagery of the forest canopy. The method has been tested with real-world data and has been able to estimate vehicle geoposition with an average error of less than 2 m. The method has two key properties that are significant: (a) The algorithm does not require a priori knowledge of the area surrounding the robot, and (b) Based on estimated vehicle state, it uses the geometry of detected tree stems as the only input to determine horizontal geoposition. Numéro de notice : A2015-963 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.14358/PERS.81.11.839 En ligne : https://doi.org/10.14358/PERS.81.11.839 Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=80021
in Photogrammetric Engineering & Remote Sensing, PERS > vol 81 n° 11 (November 2015) . - pp 839 - 846[article]