Détail de l'auteur
Auteur Zhuoting Wu |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Estimating forest and woodland aboveground biomass using active and passive remote sensing / Zhuoting Wu in Photogrammetric Engineering & Remote Sensing, PERS, vol 82 n° 4 (April 2016)
[article]
Titre : Estimating forest and woodland aboveground biomass using active and passive remote sensing Type de document : Article/Communication Auteurs : Zhuoting Wu, Auteur ; Dennis Dye, Auteur ; John Vogel, Auteur ; Barry Middleton, Auteur Année de publication : 2016 Article en page(s) : pp 271 - 281 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Arizona (Etats-Unis)
[Termes IGN] biomasse aérienne
[Termes IGN] biomasse forestière
[Termes IGN] capteur actif
[Termes IGN] capteur passif
[Termes IGN] données lidar
[Termes IGN] écosystème forestier
[Termes IGN] hauteur des arbres
[Termes IGN] image Landsat-8
[Termes IGN] surface forestièreRésumé : (auteur) Aboveground biomass was estimated from active and passive remote sensing sources, including airborne lidar and Landsat-8 satellites, in an eastern Arizona (USA) study area comprised of forest and woodland ecosystems. Compared to field measurements, airborne lidar enabled direct estimation of individual tree height with a slope of 0.98 (R2 = 0.98). At the plot-level, lidar-derived height and intensity metrics provided the most robust estimate for aboveground biomass, producing dominant species-based aboveground models with errors ranging from 4 to 14 Mg ha –1 across all woodland and forest species. Landsat-8 imagery produced dominant species-based aboveground biomass models with errors ranging from 10 to 28 Mg ha –1. Thus, airborne lidar allowed for estimates for fine-scale aboveground biomass mapping with low uncertainty, while Landsat-8 seems best suited for broader spatial scale products such as a national biomass essential climate variable (ECV) based on land cover types for the United States. Numéro de notice : A2016-179 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.14358/PERS.82.4.271 En ligne : http://dx.doi.org/10.14358/PERS.82.4.271 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=80521
in Photogrammetric Engineering & Remote Sensing, PERS > vol 82 n° 4 (April 2016) . - pp 271 - 281[article]Vegetation Burn Severity Mapping Using Landsat-8 and WorldView-2 / Zhuoting Wu in Photogrammetric Engineering & Remote Sensing, PERS, vol 81 n° 2 (February 2015)
[article]
Titre : Vegetation Burn Severity Mapping Using Landsat-8 and WorldView-2 Type de document : Article/Communication Auteurs : Zhuoting Wu, Auteur ; Barry Middleton, Auteur ; Robert Hetzler, Auteur ; et al., Auteur Année de publication : 2015 Article en page(s) : pp 143 - 154 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Arizona (Etats-Unis)
[Termes IGN] canopée
[Termes IGN] carte thématique
[Termes IGN] dommage matériel
[Termes IGN] données multitemporelles
[Termes IGN] image Landsat-8
[Termes IGN] image Worldview
[Termes IGN] incendie de forêt
[Termes IGN] ressources forestièresRésumé : (auteur) We used remotely sensed data from the Landsat-8 and WorldView-2 satellites to estimate vegetation burn severity of the Creek Fire on the San Carlos Apache Reservation, where wildfire occurrences affect the Tribe’s crucial livestock and logging industries. Accurate pre- and post-fire canopy maps at high (0.5-meter) resolution were created from WorldView-2 data to generate canopy loss maps, and multiple indices from pre- and post-fire Landsat-8 images were used to evaluate vegetation burn severity. Normalized difference vegetation index based vegetation burn severity map had the highest correlation coefficients with canopy loss map from WorldView-2. Two distinct approaches - canopy loss mapping from WorldView-2 and spectral index differencing from Landsat-8 - agreed well with the field-based burn severity estimates and are both effective for vegetation burn severity mapping. Canopy loss maps created with WorldView-2 imagery add to a short list of accurate vegetation burn severity mapping techniques that can help guide effective management of forest resources on the San Carlos Apache Reservation, and the broader fire-prone regions of the Southwest. Numéro de notice : A2015-968 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.14358/PERS.81.2.143 En ligne : https://doi.org/10.14358/PERS.81.2.143 Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=80026
in Photogrammetric Engineering & Remote Sensing, PERS > vol 81 n° 2 (February 2015) . - pp 143 - 154[article]