Détail de l'auteur
Auteur Andrea Presotto |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Lidar detection of the ten tallest trees in the Tennessee portion of the Great Smoky Mountains national park / Chris W. Strother in Photogrammetric Engineering & Remote Sensing, PERS, vol 81 n° 5 (May 2015)
[article]
Titre : Lidar detection of the ten tallest trees in the Tennessee portion of the Great Smoky Mountains national park Type de document : Article/Communication Auteurs : Chris W. Strother, Auteur ; Marguerite Madden, Auteur ; Thomas R. Jordan, Auteur ; Andrea Presotto, Auteur Année de publication : 2015 Article en page(s) : pp 407 - 413 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] arbre (flore)
[Termes IGN] arbre remarquable
[Termes IGN] hauteur des arbres
[Termes IGN] lever mobile
[Termes IGN] modèle numérique de surface
[Termes IGN] parc naturel
[Termes IGN] Tennessee (Etats-Unis)Résumé : (auteur) This paper describes a method for predicting the locations and heights of the ten tallest trees in the Tennessee portion of the Great Smoky Mountains National Park. Iterative computation tools were utilized to process the data along with the lidar derived bare earth digital elevation models and digital surface models to create canopy height models for the Tennessee portion of the park. A height threshold of 51.8 meters was chosen as the minimum value for a tree of extraordinary height. Ten potential sites containing tall trees were identified using this methodology, and seven of the top ten ranking trees’ heights were field measured using accepted forestry methodology. The trees detected using these methods are potentially the tallest trees ever measured on the East Coast of the United States. These methods show that unique tall trees can be successfully detected in a large, heterogeneous forest area using lidar data. Numéro de notice : A2015-975 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.14358/PERS.81.5.407 En ligne : https://doi.org/10.14358/PERS.81.5.407 Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=80045
in Photogrammetric Engineering & Remote Sensing, PERS > vol 81 n° 5 (May 2015) . - pp 407 - 413[article]