Détail de l'auteur
Auteur Renlong Hang |
Documents disponibles écrits par cet auteur (3)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Classification of hyperspectral and LiDAR data using coupled CNNs / Renlong Hang in IEEE Transactions on geoscience and remote sensing, vol 58 n° 7 (July 2020)
[article]
Titre : Classification of hyperspectral and LiDAR data using coupled CNNs Type de document : Article/Communication Auteurs : Renlong Hang, Auteur ; Zhu Li, Auteur ; Pedram Ghamisi, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 4939 - 4950 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] données hétérogènes
[Termes IGN] données lidar
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] fusion de données
[Termes IGN] Houston (Texas)
[Termes IGN] image hyperspectrale
[Termes IGN] occupation du sol
[Termes IGN] Perceptron multicouche
[Termes IGN] précision de la classification
[Termes IGN] semis de points
[Termes IGN] Trente
[Termes IGN] utilisation du solRésumé : (auteur) In this article, we propose an efficient and effective framework to fuse hyperspectral and light detection and ranging (LiDAR) data using two coupled convolutional neural networks (CNNs). One CNN is designed to learn spectral–spatial features from hyperspectral data, and the other one is used to capture the elevation information from LiDAR data. Both of them consist of three convolutional layers, and the last two convolutional layers are coupled together via a parameter-sharing strategy. In the fusion phase, feature-level and decision-level fusion methods are simultaneously used to integrate these heterogeneous features sufficiently. For the feature-level fusion, three different fusion strategies are evaluated, including the concatenation strategy, the maximization strategy, and the summation strategy. For the decision-level fusion, a weighted summation strategy is adopted, where the weights are determined by the classification accuracy of each output. The proposed model is evaluated on an urban data set acquired over Houston, USA, and a rural one captured over Trento, Italy. On the Houston data, our model can achieve a new record overall accuracy (OA) of 96.03%. On the Trento data, it achieves an OA of 99.12%. These results sufficiently certify the effectiveness of our proposed model. Numéro de notice : A2020-391 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2969024 Date de publication en ligne : 06/02/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2969024 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95374
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 7 (July 2020) . - pp 4939 - 4950[article]Learning multiscale deep features for high-resolution satellite image scene classification / Qingshan Liu in IEEE Transactions on geoscience and remote sensing, vol 56 n° 1 (January 2018)
[article]
Titre : Learning multiscale deep features for high-resolution satellite image scene classification Type de document : Article/Communication Auteurs : Qingshan Liu, Auteur ; Renlong Hang, Auteur ; Huihui Song, Auteur ; Zhi Li, Auteur Année de publication : 2018 Article en page(s) : pp 117 - 126 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] apprentissage profond
[Termes IGN] classification
[Termes IGN] image satellite
[Termes IGN] méthode fondée sur le noyau
[Termes IGN] réseau neuronal convolutifRésumé : (Auteur) In this paper, we propose a multiscale deep feature learning method for high-resolution satellite image scene classification. Specifically, we first warp the original satellite image into multiple different scales. The images in each scale are employed to train a deep convolutional neural network (DCNN). However, simultaneously training multiple DCNNs is time-consuming. To address this issue, we explore DCNN with spatial pyramid pooling (SPP-net). Since different SPP-nets have the same number of parameters, which share the identical initial values, and only fine-tuning the parameters in fully connected layers ensures the effectiveness of each network, thereby greatly accelerating the training process. Then, the multiscale satellite images are fed into their corresponding SPP-nets, respectively, to extract multiscale deep features. Finally, a multiple kernel learning method is developed to automatically learn the optimal combination of such features. Experiments on two difficult data sets show that the proposed method achieves favorable performance compared with other state-of-the-art methods. Numéro de notice : A2018-185 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2017.2743243 Date de publication en ligne : 13/09/2017 En ligne : https://doi.org/10.1109/TGRS.2017.2743243 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89842
in IEEE Transactions on geoscience and remote sensing > vol 56 n° 1 (January 2018) . - pp 117 - 126[article]Matrix-based discriminant subspace ensemble for hyperspectral image spatial–spectral feature fusion / Renlong Hang in IEEE Transactions on geoscience and remote sensing, vol 54 n° 2 (February 2016)
[article]
Titre : Matrix-based discriminant subspace ensemble for hyperspectral image spatial–spectral feature fusion Type de document : Article/Communication Auteurs : Renlong Hang, Auteur ; Qingshan Liu, Auteur ; Huihui Song, Auteur ; Yubao Sun, Auteur Année de publication : 2016 Article en page(s) : pp 783 - 794 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse discriminante
[Termes IGN] classification multibande
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] fusion de données
[Termes IGN] image hyperspectrale
[Termes IGN] matriceRésumé : (Auteur) Spatial-spectral feature fusion is well acknowledged as an effective method for hyperspectral (HS) image classification. Many previous studies have been devoted to this subject. However, these methods often regard the spatial-spectral high-dimensional data as 1-D vector and then extract informative features for classification. In this paper, we propose a new HS image classification method. Specifically, matrix-based spatial-spectral feature representation is designed for each pixel to capture the local spatial contextual and the spectral information of all the bands, which can well preserve the spatial-spectral correlation. Then, matrix-based discriminant analysis is adopted to learn the discriminative feature subspace for classification. To further improve the performance of discriminative subspace, a random sampling technique is used to produce a subspace ensemble for final HS image classification. Experiments are conducted on three HS remote sensing data sets acquired by different sensors, and experimental results demonstrate the efficiency of the proposed method. Numéro de notice : A2016-116 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2015.2465899 En ligne : http://dx.doi.org/10.1109/TGRS.2015.2465899 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=79996
in IEEE Transactions on geoscience and remote sensing > vol 54 n° 2 (February 2016) . - pp 783 - 794[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-2016021 SL Revue Centre de documentation Revues en salle Disponible