Détail de l'auteur
Auteur Jiahua Zhang |
Documents disponibles écrits par cet auteur (5)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
A novel cotton mapping index combining Sentinel-1 SAR and Sentinel-2 multispectral imagery / Lan Xun in ISPRS Journal of photogrammetry and remote sensing, Vol 181 (November 2021)
[article]
Titre : A novel cotton mapping index combining Sentinel-1 SAR and Sentinel-2 multispectral imagery Type de document : Article/Communication Auteurs : Lan Xun, Auteur ; Jiahua Zhang, Auteur ; Dan Cao, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 148 - 166 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] cartographie automatique
[Termes IGN] Chine
[Termes IGN] coefficient de rétrodiffusion
[Termes IGN] distribution spatiale
[Termes IGN] Etats-Unis
[Termes IGN] Gossypium (genre)
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] indice de végétation
[Termes IGN] polarisation
[Termes IGN] réflectance spectrale
[Termes IGN] série temporelleRésumé : (auteur) Cotton is an important cash crop in the world, as the main source of natural and renewable fiber for textiles. Accurate and timely monitoring of the cotton distribution is crucial for cotton cultivation management and international trade. However, most of the previous researches on cotton identification using remotely sensed images are highly dependent on training samples, and the collection of samples is time-consuming and expensive. To overcome this limitation, a new index, termed as Cotton Mapping Index (CMI), was developed in this study for automatic cotton mapping using time series of Sentinel-1 synthetic aperture radar (SAR) and Sentinel-2 Multispectral Instrument (MSI) satellite data. Four sites in the United States (U.S.) and four sites in China were selected to develop and assess the performance of the CMI. The spectral characteristics derived from Sentinel-2 and backscattering coefficients derived from Sentinel-1 for cotton and non-cotton crops during the cotton growth period were analyzed. Considering the phenology differences of crops in different regions, the features at an adaptive window were adopted to construct the CMI. The results showed that at the peak greenness period, the multiplication of red-edge 1 and red-edge 2 band for cotton samples were much larger than those for non-cotton samples, whereas the spectral angle at the red band as well as the absolute values of backscattering coefficients in vertical transmit and vertical receive (VV) polarization for cotton samples were much smaller than those for non-cotton samples. Based on these findings, the CMI was developed to identify cotton cultivated area within the cropland area. The overall accuracy of classification results for the sites in the U.S. was higher than 81.20%, and the mean relative error for the sites in Xinjiang of China was 26.69%. The CMI, which incorporated optical and radar features, had a better performance than the indices using optical features solely. The advantage of the CMI over supervised classifiers (i.e., k-nearest neighbors, support vector machine and random forest) is that no training samples are required. Moreover, the cotton distribution map can be obtained before the harvest using the CMI. These results indicated the potential of the CMI for cotton mapping. The applicability of CMI in other regions with different cropping systems and crop types needs to be further assessed in the future study. Numéro de notice : A2021-775 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.08.021 Date de publication en ligne : 21/09/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.08.021 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98836
in ISPRS Journal of photogrammetry and remote sensing > Vol 181 (November 2021) . - pp 148 - 166[article]Superpixel-based regional-scale grassland community classification using genetic programming with Sentinel-1 SAR and Sentinel-2 multispectral images / Zhenjiang Wu in Remote sensing, vol 13 n° 20 (October-2 2021)
[article]
Titre : Superpixel-based regional-scale grassland community classification using genetic programming with Sentinel-1 SAR and Sentinel-2 multispectral images Type de document : Article/Communication Auteurs : Zhenjiang Wu, Auteur ; Jiahua Zhang, Auteur ; Fan Deng, Auteur Année de publication : 2021 Article en page(s) : n° 4067 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] Chine
[Termes IGN] classification par algorithme génétique
[Termes IGN] image multibande
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] indice de végétation
[Termes IGN] optimisation (mathématiques)
[Termes IGN] prairie
[Termes IGN] précision de la classification
[Termes IGN] superpixel
[Termes IGN] texture d'imageRésumé : (auteur) Grasslands are one of the most important terrestrial ecosystems on the planet and have significant economic and ecological value. Accurate and rapid discrimination of grassland communities is critical to the conservation and utilization of grassland resources. Previous studies that explored grassland communities were mainly based on field surveys or airborne hyperspectral and high-resolution imagery. Limited by workload and cost, these methods are typically suitable for small areas. Spaceborne mid-resolution RS images (e.g., Sentinel, Landsat) have been widely used for large-scale vegetation observations owing to their large swath width. However, there still keep challenges in accurately distinguishing between different grassland communities using these images because of the strong spectral similarity of different communities and the suboptimal performance of models used for classification. To address this issue, this paper proposed a superpixel-based grassland community classification method using Genetic Programming (GP)-optimized classification model with Sentinel-2 multispectral bands, their derived vegetation indices (VIs) and textural features, and Sentinel-1 Synthetic Aperture Radar (SAR) bands and the derived textural features. The proposed method was evaluated in the Siziwang grassland of China. Our results showed that the addition of VIs and textures, as well as the use of GP-optimized classification models, can significantly contribute to distinguishing grassland communities, and the proposed approach classified the seven communities in Siziwang grassland with an overall accuracy of 84.21% and a kappa coefficient of 0.81. We concluded that the classification method proposed in this paper is capable of distinguishing grassland communities with high accuracy at a regional scale. Numéro de notice : A2021-805 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3390/rs13204067 Date de publication en ligne : 12/10/2021 En ligne : https://doi.org/10.3390/rs13204067 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98862
in Remote sensing > vol 13 n° 20 (October-2 2021) . - n° 4067[article]A two-scale approach for estimating forest aboveground biomass with optical remote sensing images in a subtropical forest of Nepal / Upama A. Koju in Journal of Forestry Research, vol 30 n° 6 (December 2019)
[article]
Titre : A two-scale approach for estimating forest aboveground biomass with optical remote sensing images in a subtropical forest of Nepal Type de document : Article/Communication Auteurs : Upama A. Koju, Auteur ; Jiahua Zhang, Auteur ; Shashish Maharjan, Auteur ; Sha Zhang, Auteur ; Yun Bai, Auteur ; Dinesh Babu Irulappa-Pillai-Vijayakumar , Auteur ; Fengmei Yao, Auteur Année de publication : 2019 Projets : 3-projet - voir note / Article en page(s) : pp 2119 - 2136 Note générale : bibliographie
The work was supported by the CAS Strategic Priority Research Program (No. XDA19030402), the National Key Research and Development Program of China (No. 2016YFD0300101), the Natural Science Foundation of China (Nos. 31571565, 31671585), the Key Basic Research Project of the Shandong Natural Science Foundation of China (No. ZR2017ZB0422), and Research Funding of Qingdao University (No. 41117010153).Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse d'image orientée objet
[Termes IGN] analyse multiéchelle
[Termes IGN] biomasse aérienne
[Termes IGN] biomasse forestière
[Termes IGN] Google Earth
[Termes IGN] image Geoeye
[Termes IGN] image Landsat
[Termes IGN] image optique
[Termes IGN] image Quickbird
[Termes IGN] NépalRésumé : (auteur) Forests account for 80% of the total carbon exchange between the atmosphere and terrestrial ecosystems. Thus, to better manage our responses to global warming, it is important to monitor and assess forest aboveground carbon and forest aboveground biomass (FAGB). Different levels of detail are needed to estimate FAGB at local, regional and national scales. Multi-scale remote sensing analysis from high, medium and coarse spatial resolution data, along with field sampling, is one approach often used. However, the methods developed are still time consuming, expensive, and inconvenient for systematic monitoring, especially for developing countries, as they require vast numbers of field samples for upscaling. Here, we recommend a convenient two-scale approach to estimate FAGB that was tested in our study sites. The study was conducted in the Chitwan district of Nepal using GeoEye-1 (0.5 m), Landsat (30 m) and Google Earth very high resolution (GEVHR) Quickbird (0.65 m) images. For the local scale (Kayerkhola watershed), tree crowns of the area were delineated by the object-based image analysis technique on GeoEye images. An overall accuracy of 83% was obtained in the delineation of tree canopy cover (TCC) per plot. A TCC vs. FAGB model was developed based on the TCC estimations from GeoEye and FAGB measurements from field sample plots. A coefficient of determination (R2) of 0.76 was obtained in the modelling, and a value of 0.83 was obtained in the validation of the model. To upscale FAGB to the entire district, open source GEVHR images were used as virtual field plots. We delineated their TCC values and then calculated FAGB based on a TCC versus FAGB model. Using the multivariate adaptive regression splines machine learning algorithm, we developed a model from the relationship between the FAGB of GEVHR virtual plots with predictor parameters from Landsat 8 bands and vegetation indices. The model was then used to extrapolate FAGB to the entire district. This approach considerably reduced the need for field data and commercial very high resolution imagery while achieving two-scale forest information and FAGB estimates at high resolution (30 m) and accuracy (R2 = 0.76 and 0.7) with minimal error (RMSE = 64 and 38 tons ha−1) at local and regional scales. This methodology is a promising technique for cost-effective FAGB and carbon estimations and can be replicated with limited resources and time. The method is especially applicable for developing countries that have low budgets for carbon estimations, and it is also applicable to the Reducing Emissions from Deforestation and Forest Degradation (REDD +) monitoring reporting and verification processes. Numéro de notice : A2019-664 Affiliation des auteurs : LIF+Ext (2012-2019) Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s11676-018-0743-1 Date de publication en ligne : 09/07/2018 En ligne : https://doi.org/10.1007/s11676-018-0743-1 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99699
in Journal of Forestry Research > vol 30 n° 6 (December 2019) . - pp 2119 - 2136[article]A comparative analysis of the NDVIg and NDVI3g in monitoring vegetation phenology changes in the Northern Hemisphere / Qing Chang in Geocarto international, vol 33 n° 1 (January 2018)
[article]
Titre : A comparative analysis of the NDVIg and NDVI3g in monitoring vegetation phenology changes in the Northern Hemisphere Type de document : Article/Communication Auteurs : Qing Chang, Auteur ; Jiahua Zhang, Auteur ; Wenzhe Jiao, Auteur ; Fengmei Yao, Auteur Année de publication : 2018 Article en page(s) : pp 1 - 20 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] analyse comparative
[Termes IGN] analyse spatio-temporelle
[Termes IGN] données spatiotemporelles
[Termes IGN] hémisphère Nord
[Termes IGN] image NOAA-AVHRR
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] phénologie
[Termes IGN] surveillance de la végétation
[Vedettes matières IGN] Végétation et changement climatiqueRésumé : (Auteur) Phenology is a sensitive and critical feature of vegetation and is a good indicator for climate change studies. The global inventory modelling and mapping studies (GIMMS) normalized difference vegetation index (NDVI) has been the most widely used data source for monitoring of the vegetation dynamics over large geographical areas in the past two decades. With the release of the third version of the NDVI (GIMMS NDVI3g) recently, it is important to compare the NDVI3g data with those of the previous version (NDVIg) to link existing studies with future applications of the NDVI3g in monitoring vegetation phenology. In this study, the three most popular satellite start of vegetation growing season (SOS) extraction methods were used, and the differences between SOSg and SOS3g arising from the methods were explored. The amplitude and the peak values of the NDVI3g are higher than those of the NDVIg curve, which indicated that the SOS derived from the NDVIg (SOSg) was significantly later than that derived from the NDVI3g (SOS3g) based on all the methods, for the whole northern hemisphere. In addition, SOSg and SOS3g both showed an advancing trend during 1982–2006, but that trend was more significant with SOSg than with SOS3g in the results from all three methods. In summary, the difference between SOSg and SOS3g (in the multi-year mean SOS, SOS change slope and the turning point in the time series) varied among the methods and was partly related to latitude. For the multi-year mean SOS, the difference increased with latitude intervals in the low latitudes (0–30°N) and decreased in the mid- and high-latitude intervals. The GIMMS NDVI3g data-sets seemed more sensitive than the GIMMS NDVIg in detecting information about the ground, and the SOS3g data were better correlated both with the in situ observations and the SOS derived from the Moderate Resolution Imaging Spectroradiometer NDVI. For the northern hemisphere, previous satellite measures (SOS derived from GIMMS NDVIg) may have overestimated the advancing trend of the SOS by an average of 0.032 d yr–1. Numéro de notice : A2018-029 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2016.1222633 En ligne : https://doi.org/10.1080/10106049.2016.1222633 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89198
in Geocarto international > vol 33 n° 1 (January 2018) . - pp 1 - 20[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 059-2018011 RAB Revue Centre de documentation En réserve L003 Disponible Simulating urban growth processes by integrating cellular automata model and artificial optimization in Binhai New Area of Tianjin, China / Fengmei Yao in Geocarto international, vol 31 n° 5 - 6 (May - June 2016)
[article]
Titre : Simulating urban growth processes by integrating cellular automata model and artificial optimization in Binhai New Area of Tianjin, China Type de document : Article/Communication Auteurs : Fengmei Yao, Auteur ; Cui Hao, Auteur ; Jiahua Zhang, Auteur Année de publication : 2016 Article en page(s) : pp 612 - 627 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] automate cellulaire
[Termes IGN] Chine
[Termes IGN] intelligence artificielle
[Termes IGN] optimisation par essaim de particules
[Termes IGN] simulation
[Termes IGN] surveillance de l'urbanisation
[Termes IGN] urbanisationRésumé : (Auteur) This study presents an optimized algorithm into the cellular automata (CA) models for urban growth simulation in Binhai New Area of Tianjin, China. The optimized CA model by particle swarm optimization (PSO) was compared with the logistic-based cellular automata (LOGIT-CA) model to see the effects of the simulation. The study evaluated the stochastic disturbance in the development of urban growth using the Monte Carlo method; the coefficient d determined the state of urban growth. The validation was conducted by both cross-tabulation test and structural measurements. The results showed that the simulations of PSO-CA were better than LOGIT-CA model, indicating an improvement in the spatio-temporal simulation of urban growth and land use changes in study area. Since the simulations reached their best values when the coefficient was between 1 and 2, the urban growth in the study area was in the period of conversion from spontaneous growth to edge-expansion and infilling growth. Numéro de notice : A2016-172 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2015.1073365 Date de publication en ligne : 14/08/2015 En ligne : http://www.tandfonline.com/doi/full/10.1080/10106049.2015.1073365 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=80516
in Geocarto international > vol 31 n° 5 - 6 (May - June 2016) . - pp 612 - 627[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 059-2016031 RAB Revue Centre de documentation En réserve L003 Disponible